top of page

Interdisciplinary Scientist/Postdoc - Computational developmental biology

Position

Post-doc

Published Date

21 août 2023

Until filled

Application

poster

Application deadline

Keywords

Computer Science, Development, Atlas, Morphogenesis, Spatial Transcriptomics

The role

Join our dynamic and collaborative research consortium as an Interdisciplinary Scientist, at the exciting crossroads of Computer Science and Developmental Biology. In collaboration with leading labs in Greece and the USA, you will contribute to an exciting HFSP-funded project, aimed at unraveling the intricate molecular and mechanical mechanisms governing ectoderm bilateral symmetry in the crustacean Parhyale hawaïensis embryos. This position offers a unique opportunity to drive innovation at the interface of cutting-edge computational techniques and biological insights.


Key Responsibilities:

Algorithm Development (Python)

  • Utilise and enhance existing algorithms to analyse of both morphological and molecular data, acquired through light-sheet fluorescence microscopy and near single cell spatial transcriptomics, respectively.

  • Develop innovative computational methods for creating average atlases of Parhyale hawaïensis ectoderm development during embryogenesis.

  • Pioneer the creation of algorithms that seamlessly integrate morphological and molecular information within the atlases, pushing the boundaries of interdisciplinary research.

Big Data Analysis

  • Implement machine learning techniques to analyse complex datasets and identify patterns, trends, and potential mechanisms underlying symmetry acquisition and maintenance.

Collaborative Research

  • Collaborate closely with international partners, including the labs of A. Pavlopoulos in Crete, Greece, and F. Xie in Cleveland, Ohio, USA.

  • Attending to the biannual consortium meetings in Marseille, Crete or Cleveland. 

Communication

  • Clearly present findings and insights through regular presentations, reports, and publications.

  • Engage with both the scientific community and the public to share the project's progress and impact.

Qualifications:

  • A Ph.D. in Computer Science, Computational Biology, Bioinformatics, or a related field.

  • Strong application from master/engineer school graduates will also be considered

  • Strong programming skills, with proficiency in languages such as Python, R, or similar.

  • Experience in algorithm development and data analysis, particularly in the context of biological data.

  • Familiarity with machine learning techniques and data integration approaches.

  • Excellent communication skills, both written and verbal, for effective collaboration and dissemination of results.

  • Ability to work in interdisciplinary teams and adapt to new challenges.

  • English fluency (at least B2 on the CEFR).

The role

Join our dynamic and collaborative research consortium as an Interdisciplinary Scientist, at the exciting crossroads of Computer Science and Developmental Biology. In collaboration with leading labs in Greece and the USA, you will contribute to an exciting HFSP-funded project, aimed at unraveling the intricate molecular and mechanical mechanisms governing ectoderm bilateral symmetry in the crustacean Parhyale hawaïensis embryos. This position offers a unique opportunity to drive innovation at the interface of cutting-edge computational techniques and biological insights.


Key Responsibilities:

Algorithm Development (Python)

  • Utilise and enhance existing algorithms to analyse of both morphological and molecular data, acquired through light-sheet fluorescence microscopy and near single cell spatial transcriptomics, respectively.

  • Develop innovative computational methods for creating average atlases of Parhyale hawaïensis ectoderm development during embryogenesis.

  • Pioneer the creation of algorithms that seamlessly integrate morphological and molecular information within the atlases, pushing the boundaries of interdisciplinary research.

Big Data Analysis

  • Implement machine learning techniques to analyse complex datasets and identify patterns, trends, and potential mechanisms underlying symmetry acquisition and maintenance.

Collaborative Research

  • Collaborate closely with international partners, including the labs of A. Pavlopoulos in Crete, Greece, and F. Xie in Cleveland, Ohio, USA.

  • Attending to the biannual consortium meetings in Marseille, Crete or Cleveland. 

Communication

  • Clearly present findings and insights through regular presentations, reports, and publications.

  • Engage with both the scientific community and the public to share the project's progress and impact.

Qualifications:

  • A Ph.D. in Computer Science, Computational Biology, Bioinformatics, or a related field.

  • Strong application from master/engineer school graduates will also be considered

  • Strong programming skills, with proficiency in languages such as Python, R, or similar.

  • Experience in algorithm development and data analysis, particularly in the context of biological data.

  • Familiarity with machine learning techniques and data integration approaches.

  • Excellent communication skills, both written and verbal, for effective collaboration and dissemination of results.

  • Ability to work in interdisciplinary teams and adapt to new challenges.

  • English fluency (at least B2 on the CEFR).

Requirements

  • A Ph.D. in Computer Science, Computational Biology, Bioinformatics, or a related field.

  • Strong application from master/engineer school graduates will also be considered

  • Strong programming skills, with proficiency in languages such as Python, R, or similar.

  • Experience in algorithm development and data analysis, particularly in the context of biological data.

  • Familiarity with machine learning techniques and data integration approaches.

  • Excellent communication skills, both written and verbal, for effective collaboration and dissemination of results.

  • Ability to work in interdisciplinary teams and adapt to new challenges.

  • English fluency (at least B2 on the CEFR).

Application procedure

Interested candidates are invited to submit their CV, a cover letter detailing their research interests and relevant experience, and contact information for two references to leo.guignard@univ-amu.fr

Selection process and calendar

Pre-selection: The pre-selection process will be based on qualifications and expertise reflected in the candidates CV and motivation letter. It will be merit-based. All candidates will be informed whether they have been pre-selected or not.

Interview: Pre-selected candidates will be contacted to coordinate a set of interviews with a set of selected members of CENTURI (including Léo) and a seminar.

Location

Léo Guignard lab

bottom of page