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Introduction: Cell tracking in biology and
medicine: a (very) brief history

Regardless of the system studied or the focus of the
study, if one wants to characterize cell position
dynamics from a recorded time series of images in a
quantitative manner, it is necessary to track the cells
and their progeny, the so-called cell lineage. Cell
tracking methods report cell positions over time and
when and where cells are dividing and potentially
dying.

The beginning of cell tracking

Cell trajectories and division patterns have been stud-
ied for decades, leading to important biological and med-
ical discoveries. For example, it is by manually tracking
every single cell of the wormCaenorhabditis elegans during
its embryonic development that Sulston et al. [70] discov-
ered that it exhibits a stereotypical lineage, meaning that
cells inC. elegans embryos always divide around the same
time and always follow the same trajectory. Moreover,
they were able to show that consistently the same cells
were dying, always at the same moments during the
development. This observation then led to the discovery
of programmed cell death (apoptosis) and to a Nobel
Prize that J. Sulston shared with S. Brenner and H. Hor-
vitz. Another example where cell tracking had a crucial
role was for the better understanding of the role and
the drivers of cellecell reorganization during tissue shape
changes during the 1990s and early 2000s [6,7,19,33,53]. In
these works the tracking was still done fully manually.

Nonetheless, it led to a significantly better understanding
of themechanisms driving tissue remodeling at the single
cell scale.

The rise of faster microscopes

The development of faster and better resolved
microscopes together with more efficient cell labeling
methods have made live recording of single cells, over
a long period of time, easier to acquire. This rapid rise
of image acquisition power came with new opportu-
nities for the analysis of cell lineages which in turn led
to new biomedical discoveries that were only possible,
thanks to novel semiautomatic and automatic tracking
methods. For example, the access to longer time series,
of better quality, quickly allowed to precisely establish
cell number and position over time during the early
development of, among others, the fish Danio rerio
[38,54], the plant Arabidopsis thaliana [18], the fly
Drosophila melanogaster [41], or more recently of limbs
of the crustacean Parhyale hawaiensis [79].

Cell tracking methods pick up the pace

The accessibility of these modern image acquisition
methods increased the importance of the development
of better performing cell tracking methods specific for
biological and biomedical applications. The ensuing in-
crease of interest in developing cell tracking algorithms
is indeed reflected in the number of respective publica-
tions (see Fig. 20.1). The improvements of the tracking
methods together with the acquisition methods enabled,
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among others, the refinement of the cell movement
quantification during D. rerio embryogenesis [64] and
allowed the modeling of morphological events such as
the cell division patterning during D. rerio epiboly [80],
the modeling of cell organization during the develop-
ment of the sea urchin Paracentrotus lividus [74], and
the modeling of cellecell communications during the
embryonic development of the chordate Phallusia mam-
millata [23]. Moreover, cell tracking methods helped,
for instance, to study and build mechanical models of
morphogenetic events such as the morphogenesis of
the D. melanogaster pupal wing [14,15].

Navigating cell tracking methods

As shown in the previous paragraphs, cell tracking al-
lows answering a large variety of biomedical questions.
And indeed to be actually able to answer these questions
the cell tracks were indispensable. Many different
methods are now available to track cells from such
time series of images either automatically, semiautomat-
ically, or manually. Each of these methods comes with
strengths and weaknesses; each is best suited for
different types of questions, organisms, and image
acquisition modalities. The variety of existing methods
is large and it can be difficult to match the best algorithm
and visualization method to the specific characteristics
of the question and of the dataset.

This chapter aims at supporting researchers in their
choice, less manual work is not necessarily better. Firstly
we will cover basic technical aspects about cell tracking
that are necessary to make an informed decision about
which method to use. Secondly we will present how to
choose between the different general categories of
methods and what they are best suited for. Finally, we

will detail the core principles of each of these categories,
putting an emphasis on deep learning methods which
have been one of the most developed or most actively
improved.

Basic principles of detection, segmentation, and
tracking algorithms

To be able to make an informed decision about which
method to use, given a dataset and a question to be
answered, it is necessary to understand the basic
principles of cell tracking.

From a practical perspective the goal of a tracking
algorithm is to follow all the cells of interest together
with their progeny throughout a time series. This goal
can be rephrased, in a technical fashion, as the task of
uniquely identifying each cell of interest over a given
time series, to associate with each identified cell its posi-
tion function of time, and to build a hierarchy recapitu-
lating the progeny and ancestry of each cell. To perform
all these tasks, cell tracking algorithms can generally be
decomposed into two main components:

1. a cell detection or segmentation component1 that will
identify each cell and its position in each frame of the
time series

2. a linking component that will reconstruct the progeny
of each cell by linking its positions across frames (see
Fig. 20.2)

In many tracking methods these two components are
applied sequentially and independently. First the detec-
tion is applied followed by the linking. Some methods
perform these two tasks in parallel allowing to constrain
and/or correct each other.

Cell tracking formalization

The result of a cell detection method for a given image

is a set of positions P ¼
!
p; p˛R2

"
(for 2D images) or R3

(for 3D images). A cell detection algorithm then aims at
building P such that every element in P corresponds to a
cell of interest.

To properly formalize the result of a cell segmentation
method, it is helpful to first define an image. An image
I is a function that maps 2D or 3D coordinates onto an
intensity value (or a set of intensity values, for example,
for RGB images):

I : U3Rd/I3ℕ:

FIGURE 20.1 Evolution of the appearance of the word cell
tracking in biological publications from 2001 to 2017. The publication
database comes from the CORE dataset [39].

1 Detection and segmentation are two different tasks. Detection reports the position of an object. Segmentation on the other hand not only

allows to have information about the position of the objects detected but also about their shapes. Since this chapter is focused on cell tracking

the differences between detection and segmentation will not be discussed in depth. Nevertheless, for each method it will be mentioned

whether it is a detection or a segmentation method.
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I associates each point (of dimension d, usually d ¼ 2
or 3) in the image definition space U with an intensity
value I which is usually a positive integer. The result
of a cell segmentation method of a given image I is a
segmented image S:

S : U3Rd/L3ℕ

where L is a finite set of labels identifying the region of
each segmented object in the image I, in a unique
manner. We can then build the set of regions R ¼
frlgl˛L created by S where:

rl¼ fp˛U : SðpÞ¼ lg

By definition R is a partition of the image I. Therefore,
the following rules are respected:

Wrl˛Rrl¼U

rlXrm¼B crl; rm˛R; rlsrm

Often, on top of the usual partition rules, a connectiv-
ity rule is added (one exception might be if an object can
be partly covered by another object, thus potentially
visually splitting it into two parts). This rule says that
all the regions must be connected components according
to a local connectivity rule c. The rule c is equal to 1 if
two pixels are connected and equals to 0 otherwise:

c
#
pi; pj

$
¼

(
1 if pi and pj are neighbors

0 otherwise
; pi; pj˛U

The definition of whether two pixels are neighbors is
arbitrary and chosen according to the study. For
example, it can be that two pixels are neighbors if they
share a side (4-connected in 2D) or if they share a side
or a corner (8-connected in 2D). Paths between pixels
can then be built from the rule c. A path Pa between a
pixel pi and a pixel pj is a sequence of pixels starting with

pi and ending with pj such that the c
%
pk; pl

&
¼ 1 for all

consecutive pk; pl ˛ Pa2. Then, a region ri is a connected
component if there is a path between any couple of pixel
in ri where all the members of the path belong to ri:

c
#
pj; pk

$
˛ ri;dPa s:t: cpl ˛ Pa; pl ˛ ri:

A segmentation algorithm then aims at building S
such that the partition built maps every voxel to the label
of the cell it belongs to or to the background.

A cell tracking can be defined as a directed forest F , a
disjoint union of directed trees, under the graph theory
meaning. A tree T is defined by a set of vertices and a
set of edges that connect the vertices:

T ¼ðV;E3V$VÞ

The vertices (vi˛V) of the trees are the cells and the
edges (ei˛E) are the temporal links. V being the set of
cells, it can be partitioned in as many subsets as there
are time points: V ¼ Wt˛TVt, where T is the set of time
points of the considered time series and Vt the set
of detected or segmented cells at time t˛T. The trees of

FIGURE 20.2 Cell tracking. Top row: Images of HeLa cells where the nuclei have been labeled with fluorescent proteins [47,73]. Examples of
cell division and cell apparition are shown. Bottom row: Schematic of the different steps of a cell tracking algorithm.
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a cell tracking follow the usual rule from the graph the-
ory: there is exactly one path that connects any two
vertices in V. Other rules that can be added to constrain
the trees are discussed later in Section “Automatic
tracking,” but one rule is always present: two vertices
that exist at the same time point are not connected in T :

ct˛T;cei; ej˛Vt :
#
ei; ej

$
;E:

InF , each tree represents a cell progeny, meaning that
if initially only a single cell is tracked and it undergoes
multiple rounds of division, the forest will still contain
only one tree. The number of trees (i.e., cell lineages)
in a forest is at least the number of cells at the beginning
of the experiment. Tracking errors or a cell moving into
the field of viewmight cause the start of additional trees.

A tracking algorithm consists of building V, usually
using detection or segmentation methods, and of build-
ing E using linking methods. As aforementioned, V and
E are usually built sequentially but some methods build
these two sets in parallel.

A more in-depth explanation of the different methods
of detection and tracking are provided in the following
sections.

Detection and linking errors

Another important point to keep in mind while
assessing which method to use is the kind of errors
that can be generated by the different kinds of tracking
algorithms, the potential reasons why and when these
errors could occur and what can be done to prevent
these errors (Fig. 20.3).

Cell detection and linking tasks can fail locally for
multiple reasons. Local tracking errors can end up hav-
ing a dramatic negative effect on the overall analysis. A
tracking error can result in the interruption of a track, for
example, because the detection method failed to
correctly identify a cell. Such an interruption prevents
the tracking of the actual path of that cell and will likely
prevent any analysis on it, even worse, it could produce
erroneous measurements. One error might be sufficient
to prevent the analysis of a whole track. Because of
this, a cell tracking algorithm that on average mistracks
a cell in two consecutive time points 5% of the time
would fail to correctly track 75% of the cells after 28
time points (see also Fig. 20.10). Due to the strong depen-
dencies that exist between cell detection and tracking:
only the detected cells will be tracked, the errors
happening during cell detection will have a strong
impact on the tracking. During the detection phase
two kinds of errors can be found:

1. the algorithm fails to detect a cell: false negative or
underdetection/undersegmentation

2. the algorithm finds a cell where it should not have:
false positive or overdetection/oversegmentation

Note that sometimes a given algorithm can split a cell
into two or more cells which would also be considered
an overdetection. The difficulties that cause detection er-
rors are often related to the quality of the acquisition
(e.g., the signal-to-noise ratio is not high enough, the
spatial resolution is not high enough). The errors can
also stem from the complexity of the system imaged
(e.g., the cells are too tightly packed, the cells have a

FIGURE 20.3 Schematics of the different kinds of segmentation errors. Left: same HeLa cells as in Fig. 20.2. Top row: results of detection
algorithms; bottom row: results of segmentation algorithms. Left: expected ground truth; right: detection and segmentation with one false
negative (1) and two false positives (2). Note that one false positive for the segmentation is a cell split into two.
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wide range of shapes or intensity profiles). It is therefore
important to keep these sources of errors in mind while
planning the imaging protocol. Knowing beforehand
the properties of the images and of the system/organism
to process helps to determine the correct detection
algorithm.

During the linking process multiple other kinds of
errors can be found. Fig. 20.4 illustrates the possible
kinds of errors:

1. track interruption
2. missing a division
3. adding a division
4. track identity switch

Any linking error is the result of a subset of these four
errors (note that missing a division is a kind of track
interruption too). There are a large number of reasons
why these errors could happen. First, if cell detection
is incorrect, it is almost certain that the linking will
fail. A missing cell or underdetection can lead to a track
interruption (Fig. 20.5C, error 1.1). An underdetection
can also lead to false division (Fig. 20.5C, errors 1.2
and 1.3). But even when the cell detection is perfect,
the linking task remains difficult and can fail for multi-
ple reasons. When the detection is perfect, linking errors
occur if there is an ambiguity in the potential linking.
More precisely, if a cell at a given time t has a similar
probability to come from several different cells from
time t % dt, dt being the temporal resolution. When
this kind of situation arises (Fig. 20.5D, errors 3) a choice
has to be made by the algorithm on the basis of its
specific implementation, i.e., its internal heuristics or
model. More complex heuristics might resolve some
tracking errors but might not resolve all of them or
might create new ones (Fig. 20.5E). These ambiguity
problems are often related to the time resolution used
to acquire the time series. If the distance traveled (dx)
by a cell c between two consecutive time points is larger
than half the distance between two cells there will be an
ambiguity in the resulting tracking.

This is the case because the cell cwill end up closer to
the previous position of one of its neighbors than it is
from its own previous position (Fig. 20.6). In other
words, the time between two consecutive frames (dt)
has to be smaller than half the distance between two
cells (D) divided by the cell speed (v)

dt <
D

2v
;

which can be rewritten as follows:

dt <
D

2
dx

dt

simplifying to

dx <
D

2
: (20.1)

This means that the displacement of a cell between
two consecutive time frames has to be smaller than
half the distance between two neighboring cells. There-
fore a direct way to resolve potential ambiguities is to in-
crease the frame rate (resulting in a higher temporal
resolution). It is of course not always possible to increase
it sufficiently. In these cases it is then critical to carefully
choose a well suited set of algorithms to perform cell
tracking, for example, a displacement model such as in
Bayesian tracking [72] to predict the most likely pairing
(Fig. 20.5E). Fig. 20.7 shows an example of tracks
obtained from ascidian embryonic development [23].

Quantifying cell detection and tracking errors

In order to have a good idea about the performances
of a given method it is important to be able to quantify
the errors that are made. For detection algorithms such
quantification is done by counting the number of false
positives ( fp) and the number of false negatives ( fn)
and comparing these numbers to the number of true
positives (tp). The metrics usually computed are:

Precision p ¼ tp
tpþfp which informs about the ratio of

FIGURE 20.4 Schematics of the different kinds of lineage errors. Links can bemissed (false-negative links) by the tracking algorithm leading
to the interruption of a track or the miss of a division. Links can be wrongfully added (false-positive links) whichwould lead to fake divisions or to
missing an apoptosis event, for example. Ultimately, links can be flipped (which is a combination of a false-negative and false-positive edge). This
can result in the switch of the identity of a given track.
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correctly detected objects to the total number of detected

objects and recall r ¼ tp
tpþfn which informs about the pro-

portion of true cells actually found (note that tpþ fn is
the total number of true cells in the image). These two
scores are often aggregated into one, the F-score,
F1 ¼

p,r
pþr which is the harmonic mean of p and r. One

difficulty of quantifying detection errors is to decide
whether a detection is a true or a false positive. The
problem stems from the fact that usually the detection
algorithm does not find the cells at exactly the same
position as the ground truth (as the ground truth is
based on human annotation, both the ground truth
and the output of the algorithm exhibit at least some
small degree of error or uncertainty). In these cases it
is necessary to map cells between the detection and
the ground truth. This assignment problem can be
resolved with a matching algorithm such as the

FIGURE 20.5 Schematic of potential errors in tracking algorithms. (A) Four cell tracks. The green track divides once, the purple track enters
the field of view at a later time. (B) Ground truth for a tracking algorithm for a given sampling of time. (C) Resulting tracking with the given
detection, the linkingmethod is a nearest neighbor mapping. The detection errors 1.1, 1.2 and 1.3 are underdetection errors. These detection errors
result in an interruption of the light-blue and brown tracks for the errors 1.1 and 1.2. They result in fake divisions in the dark green and green
tracks for the errors 1.2 and 1.3. The detection error 2 is an overdetection error, a cell is found while none should have been resulting in a fake
division event. (D) Result of a nearest neighbor tracking algorithm given a perfect detection output. Even if the detection is perfect, tracking errors
are still present. Because of touching cells, fake divisions are found in 3.1, 3.2, and 3.3. Because of rapid cell displacements, a cell is missing its
successors in 4 and a cell is found dying in 5. (E) Using a more sophisticated method, most of the previous tracking errors are corrected. Still,
because of abrupt change of displacement, an error is made in 7. (F) By increasing the time resolution, more errors are corrected. But, because of the
overlap between cells, a new error of track exchange is made.

FIGURE 20.6 Illustration of how having dt<D
2v could impact the

quality of the cell tracking.
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Hungarian method [42] using, e.g., the pairwise
Euclidean distances between the cells in the ground
truth and cells in the detection as costs. Depending on
the data a distance threshold has to be chosen up to
that a match is considered valid. If the distance value
is larger than this threshold, it is usually biologically
not plausible to consider the ground truth object and
the detected object as the same cell.

Quantifying errors made by segmentation algorithms
are similarly done as for detection algorithms by looking
at the number of tp, fn, and fp. However, this is done both
on the pixel-level and on the object-level. As for the
detection it is important to pair cells together. As
opposed to detection, usually not the Euclidean distance
between cells is used to match cells anymore but the
Jaccard index [34] (or Intersection over Union, IoU):

J ¼ jriXrjj
jriWrjj where ri is a region from the segmented image

and rj a region from the ground truth. J is equal to 0 if the

two objects do not overlap and one if they perfectly over-
lap. Note that the Euclidean distance is a distance, mean-
ing that the closer the distance between two objects is to
0 the more likely it is that they will get paired, while the
Jaccard index is a similarity measure meaning that the
more similar two objects are (and thus more likely to
get paired), the higher the index is. For the application
at hand the Jaccard index can be equivalently written

as J ¼ tp
tpþfpþfn. On the pixel-level, and for a specific

potential pair of objects, tp is the size of the set of pixels
in the intersection of the two objects and tpþ fpþ fn the
size of set of pixels in the union. On the other hand,
interpreting tp, fn, and fp on the object-level, tp is the
number of matched pairs of objects with a pixel-level
Jaccard index above a certain threshold s (fn and fp anal-
ogously). Computing the Jaccard index this way results
in an evaluation value for the whole image, often
referred to as AP (average precision; the name is unfor-
tunately somewhat imprecise, and its definition dissim-
ilar to the one often used for the evaluation of natural
images). Only a single segmented object can have a
pixel-level Jaccard index of > 0:5 with a specific ground
truth object (as it then covers more than half of it), thus
potentially enabling a unique matching. However, espe-
cially in 3D and for smaller objects, if an object is
segmented with only a single extra pixel in all directions
this already has a significant impact on the pixel-level
Jaccard index (though maybe less at visual inspection).
Thus imprecise yet otherwise correct matches might be
undercounted. Moreover, Hirsch and Kainmueller [29]
show for 3D nuclei data that the detection performance
of using the segmentation masks and a threshold s of 0.3
to pair cells roughly coincides with using their centers
and distances-basedmatching (as described in the previ-
ous paragraph), suggesting it as a good compromise
value to balance fp and fn if one is purely interested in
detection. To get a good impression of the overall

FIGURE 20.7 Cell tracking output. (A) Output of the tracking of a Phallusia mammillata embryo from the 64-cell stage until the end of the
beginning of the tailbud stage. (B) Close-up on one of the tracks from (A). The purple cell is the start of the track, red cells are cell snapshots one
time point before division, yellow cells are end of the track cells, and gray cells are intermediary cells. (C) Same tracking as (B) but instead of
having time on the y axis, x and y coordinates are plotted. Colors are the same as in (B). (A) Data from Guignard L, Fiúza U-M, Leggio B, Laussu J,
Faure E, Michelin G, et al. Contact areaedependent cell communication and the morphological invariance of ascidian embryogenesis. Science 2020;369:6500.
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performance of the model and to counterbalance the
effect small changes in the segmentation can have and
to model the uncertainty in where to place the threshold
the object-level Jaccard index or AP is usually averaged
across a wide range of thresholds (in 0.05 or 0.1 steps
from 0 to 1).

Finally, quantifying the errors made by linking algo-
rithms is significantly more complicated and the metrics
used are not yet completely standardized. Methods that
have been used are to individually count the number of
false-negative links (e.g., track interruption or missing
division), false-positive links (e.g., nonexisting tracklet or
superfluous division), and otherwise wrong links (e.g.,
identity switch) (see Fig. 20.4) [46]. Another option is to
compare the tracking to the ground truth track in a
more global way by counting the minimum number of
operations necessary to transform the reconstructed tree
into the ground truth tree, a method proposed in Ref. [48].

One must keep in mind that even if the scores show a
high level accuracy (99%, for example), it does not mean
that only 1% of the tracks are wrong. If the 1% error is
spread around all the tracks, it is possible that none of
the tracks reconstructed are fully correct.

A solid grasp of the basics of cell tracking methods
and the errors that can arise from such methods enables
a well-founded selection of the mostsuited method. It
can also foster an understanding of why amethod might
have failed and what can be done to avoid these types of
failures in the future.

How to choose the best suited type of method

Cell tracking methods can be grouped into three main
categories: manual, semiautomatic, and automatic.
Before choosing a specific method, it is important to
decide the type of method that is best suited. Each of
these three types has both advantages and drawbacks
depending on the setting and it is not always easy to
decide which one to work with.

Overview

Manual methods are precise with as few errors as
humanly possible and require less validation of the
quality of the results. The downside is that they are often
tedious and time-consuming preventing this type of
method to be used for large datasets and the manual
work required by the user has to be repeated for every
new data sample.

On the other side are fully automatic methods. These
methods can be applied almost without any restriction
on the dataset size. The downside is that these methods
are often both specific to a data type, for example, the

image modality (what type of microscope, what labeling
method, for example), the type of sample or both, and
need to be, often heavily, parameterized and/or trained.
To be effective this parameterization and training phase
necessitates at least some expertise about the method.
Moreover, even with good knowledge of the method,
the time spent on parameterization and training can be
substantial.

The last category, semiautomatic, is in between
manual and automatic. There is no exact definition of
what a semiautomatic method comprises. Its main
feature is that the user is supported in their tracking
effort by automating some aspects of it. This can refer
to, for example, human-in-the-loop approaches where
iterative tracking proposals are made automatically to
be then corrected or verified by the user. In other ap-
proaches the user initiates a track by selecting a cell in
some frame and the algorithm tries to follow that cell
in the adjacent frames repeatedly for as long as it is
confident that no error is made. While these kinds of
methods often offer a good compromise between the
precision and usability of manual methods and the scal-
ability of fully automatic methods they can run short
when the datasets are too large. For example, in the sec-
ond approach, even if the algorithm can complete all
tracks over many frames automatically without errors,
if there are million cells, the user still has to initiate all
of them manually.

The frontier between choosing manual, semiauto-
matic, and automatic methods can be blurry and often
multiple solutions are viable. Choosing which of these
categories is best suited for a given tracking task and a
given user can be complicated but it mainly boils
down to the time the user has to invest to get the final
set of tracks that can then be analyzed. Note that only
user time is mentioned as the computational time neces-
sary to reconstruct tracks once a method is parameter-
ized does not involve the user which can therefore
perform other tasks in parallel. This time necessary for
the user to reconstruct the tracks from a dataset, function
of a given method mainly depends on the complexity of
the dataset and the total number of cells to track per time
frame and time series.

The following sections explain how to better assess
the time necessary to assemble a set of tracks and there-
fore help toward better choosing a type of method.

Total number of cells per time frame and time
series

When manual methods are used, the time required to
reconstruct all the tracks from a given dataset depends
in part on the number of cells nc to track in each time
frame f. no represents the number of cells each
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multiplied by the number of times they appear in the
time series (i.e., the number of snapshots for each cell);
it is the total number of objects to detect, in the case of
cell tracking, we call each object to detect a cell snapshot
(for example, in Fig. 20.5B, no ¼ 24). For manual
methods the time necessary to track all the cells of a
dataset (TM) can be approximated as the time it takes
to identify2 a cell (tc) multiplied by the total number of
objects to track (no) plus the time it takes to link two
consecutive cell snapshots (tl) multiplied by the total
number of links. The total number of links can be
approximated as the total number of cells to track in
each time frame minus the number of cells at the initial
time point. If we assume that the number of cells at the
initial time point is negligible when compared to the
total number of cells then

TM¼ no$ðtcþ tlÞ: (20.2)

For automatic methods the user time necessary to
produce a cell tracking from a given dataset does not
depend on the total number of objects no in the dataset,
which instead will impact the computational time (see
end of Section “Overview”). The time (TA) can be
approximated as the time it takes to generate a ground
truth (tGT) that will be used for validating the method
and if necessary training it plus the time it takes to
parameterize the method (tp) plus the (computational)
time it takes to run the algorithm on the whole dataset.
Therefore we approximate the total user time it takes
to produce a cell tracking from a given dataset as

TA¼ tGT þ tp: (20.3)

The main benefit for automatic methods in terms of
time usage is that once the method is trained and/or
parameterized, new similar data that need to be tracked
can be processed with negligible required user time.

For semiautomatic methods, the total time necessary
to produce a cell tracking from a given dataset (TSA) is
a bit harder to define universally. Assuming the second
approach defined in Section “Overview” it depends on
two components: Similar to manual methods each cell
nc has to be identified (tc), yet if the linking works
well, only once instead of in every frame. However,
similar to automatic methods, the method has to be
parameterized for the linking to work well tp:sa. Note
that the time to parameterize semiautomatic methods
is typically much lower than for automatic methods, as
it usually has a lot fewer parameters. Then

TSA ¼ nc$tc þ tp:sa: (20.4)

While the total number of cells has a great impact on
the user time for manual and semiautomatic methods

and the total number of frames on the user time for
manual methods, the complexity of the dataset has an
impact on all types of methods.

Data complexity

Manual detection of cells and linking them across
time frames is, at least for a subset of the data, always
necessary. Its importance is obvious for manual
methods. For automatic and semiautomatic methods,
manual reconstruction of some of the tracks is usually
required to validate the method and sometimes to train
it. The more complex a dataset is, the more complex it is
to manually reconstruct tracks. A dataset can be com-
plex for multiple reasons, the most common being its
spatial dimensionality (two or three dimensions), the
quality of the images, the spatial and temporal resolu-
tion, and the physical properties of the system studied.

Data dimensionality

The dimensionality of a dataset has a strong impact
on the ability of the user to detect cells and link them
across consecutive time frames. Visualization and
annotation of 3D datasets is known to be complicated.
This is due to the human visual system; it is hard to po-
sition oneself in 3D when using a 2D screen. This prob-
lem is of lesser importance for automatic methods; the
impact of 3D versus 2D is mostly that the computa-
tional time increases significantly which, as mentioned
above, is not considered here. Therefore when dealing
with 3D time series, manual reconstruction takes signif-
icantly longer while automatic methods are only
marginally impacted. Semiautomatic methods might
also be significantly impacted since the manual input
becomes harder and both the automated processing
parts and the feedback from the system require more
time, too.

Image quality and spatial resolution

The quality (both in terms of signal-to-noise ratio and
in terms of spatial resolution) of the images forming a
time series impacts the ability to efficiently and correctly
detect cells. Often a decrease in quality will impact
(semi)automatic methods more severely. Both the
human visual system and deep learning methods, a
common foundation of automatic methods, are known
to be great at recognizing patterns. However, unless a
large amount of ground truth training data is available
and a lot of time is spent on parameterization, human
users still have an edge on handling large variability in
the data and at drawing conclusions. That is true only
up to a certain extent, once below a threshold of quality,

2 Note that the time necessary to segment an object is often order of magnitudes higher than the time necessary to detect an object.
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both the time it takes to manually detect and link cells
and the time required for training and parameterizing
an automatic method will increase vastly.

Temporal resolution

Temporal resolution refers to the frame rate (images
per second or minute or time between two images)
that is used to record the time series. The value required
for a “good” temporal resolution depends on the size
and speed of the objects, which in turn depend on the
type of cells. As illustrated in Fig. 20.5, a low temporal
resolution can negatively impact automatic tracking
methods. This is true for manual methods, too, yet to a
lesser extent. While especially automatic deep learning
systems might be even better at recognizing patterns
(inductive reasoning), a lower temporal resolution
results in a higher variability in the observed cell
arrangements requiring stronger deductive capabilities,
something humans excel at and machine learning
systems still struggle with. As mentioned in Section
“How to choose the best suited type of method”, a
higher temporal resolution can help the system to avoid
certain kinds of errors. Moreover, especially overlap-
based linking systems (two objects are linked if their
segmentation masks have a large overlap) benefit
greatly from it. On the other hand, if the temporal
resolution is too low, correct linking might become
impossible, even for expert users.

Physical properties of the system

Different systems have different properties, regard-
less of the acquisition modality. For example, the cells
can be more or less packed, divide more or less often,
and have similar or a large variety of shapes and behav-
iors. The more heterogeneous a dataset is, the harder it is
for automatic and semiautomatic methods to correctly
reconstruct the tracks and therefore the more finely
tuned the algorithm needs to be and the larger the
training datasets need to be.

All these differences of complexity of the system
studied have an impact on the time it takes to either
build the full tracking for manual segmentations, or to
finely tune the parameters of automatic and semiauto-
matic methods and to build the partial tracks necessary
for the validation of the method. This notion of
complexity is carried throughout this chapter.

Deciding on the method

Now, to choose from the set of manual, semi-
automatic, or automatic methods, using the presented
characteristics, one can estimate the complexity and
number of cells of their data and place it in the chart
in Fig. 20.8. The needed user time will also vary between
users, for example, someone with a stronger computer

science background would probably be more efficient
at parameterizing a method than one with a stronger
biomedical background. On the other hand, a user
with a strong biomedical background might be faster
at building ground truths and performing manual
detection. This will affect the position of the boundaries
between the three types of methods and shift them in
one direction of the other.

Overall, manual methods are strongly recommended
for one-offs, when such tracks are not expected to be
routinely reconstructed in the near future. On the con-
trary, if a large number of time series are expected to
be tracked, then automatic methods are strongly recom-
mended. Semiautomatic methods constitute some form
of middle ground, very useful for data with not too
high complexity and not too many cells or with varying
image statistics that only has to be tracked occasionally,
making the effort of setting up automatic methods
dispensable.

The remaining of this chapter will be dedicated to
describing in more detail each type of method and in
giving examples of software tools.

The method types in more detail

The previous section describes how cell tracking
works and what the usual types of errors are that can
be encountered and helps to choose a type of method,
manual, semiautomatic, or fully automatic. This section
aims at first describing the specific challenges and limi-
tations that one would face using each of these methods,
especially for fully automated methods, and second
describing a few specific methods that could be used
to perform cell tracking.

Manual tracking

Manual tracking methods are usually the methods of
choice when the dataset cannot trivially be tracked in an
automatic fashion and the number of objects to track is
low enough. Note that here, “trivially tracked” will
depend on the expertise of the user.

In these approaches the user has to select every object
(i.e., cell) in every frame manually and link it to its
ancestor (predecessor) and progeny (successor(s)). The
resulting cell tracks are therefore usually almost error
free as the user himself/herself is building them step
by step. The main challenge that manual methods face
is to enable the user to easily navigate and annotate
the datasets to track its cells. This challenge is particu-
larly increased when dealing with 3D datasets. The
following tools (in alphabetical order) are designed to
facilitate visualization and annotation of 2D and/or 3D
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images and therefore allow to perform cell tracking
manually:

• CellProfiler (for 2D tracking) [10,50]
• Icy [12]
• Ilastik [5]
• ImageJ/Fiji [61,62]

Note that when dealing with especially large datasets
specific visualization tools which optimize memory
usage have to be considered. For example, the ImageJ/
Fiji plugin named MaMuT [55,71,79] is especially suited
for tracking cell positions in terabytes 3D datasets.

Limitations

In general, tools for manual tracking are simple to set
up and no parameters have to be tuned. Therefore for
smaller datasets they are almost always going to be a
good choice. But ultimately manual tracking can be
very time-consuming. For larger datasets, the number
of objects to be tracked grows rapidly and so does the
time to manually track the cells. This quickly becomes
prohibitive and more automated methods have to be

considered. It is also important to remember that for
easier data, semiautomatic methods are often similarly
straightforward to set up and take off significant burden
from the annotator; and for harder data, especially in
dense 3D data, it gets difficult to keep track visually of
what goes where without specialized visualization tools.
The sweet spot is therefore reasonably difficult data that
are not too large.

Semiautomatic tracking

Semiautomatic tracking methods come in different
flavors but the main universal characteristic is that all
have some form of back-and-forth feedback mechanism
between the user and the tracking system. The tracking
algorithm suggests a solution, potentially highlighting
positions of uncertainty. The user then inspects
the resulting tracks and partially or fully corrects the
proposed solution.

In some systems the user feedback is used to learn
better values for a set of internal parameters and then
refine the tracking output (the concept of learning

FIGURE 20.8 Schematics to help choosing a type of method.
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parameters is a common property of automatic
methods; for more on it, see Section “Automatic
tracking”). This process can be repeated until the
tracking results reach a satisfying quality. Feedback
loops of this kind between the user and the algorithm
are referred to as iterative or active learning. Tools
such as Ilastik [5] and JAABA [35] 3 support this princi-
ple. The advantage of iteratively tuning an algorithm us-
ing this type of feedback loop between the user and the
algorithm is that both the algorithm itself and its tuning
can be kept simpler. The algorithm does not have to be
designed to allow for every possible kind of complica-
tion as the user is there to guide it or fix mistakes inter-
actively. This makes it more accessible to less technically
versed users. Moreover, similarly to the automatic
methods in the next section, once the algorithm is tuned,
it can be used as is on new datasets that have the same
characteristics as ones the algorithm was tuned on.

In a different semiautomatic tracking approach the
user initiates a track by manually selecting a cell in
some frame and the algorithm tries to follow that cell ac-
cording to certain, usually built-in, heuristics in the adja-
cent frames repeatedly for as long as it is confident that
no error is made. The track can then again be inspected
and potentially corrected. These approaches typically
have even fewer parameters (that are usually manually
tunable but not automatically learnable) and, if appli-
cable to the data at hand, are even easier to use. An
exemplary tool for this kind of system is MaMuT [79];
Ilastik supports it as well.

One big challenge that semiautomatic methods face is
similar to the one of manual methods: enabling the user
to seamlessly navigate and annotate the dataset. For this
reason tools that allow for manual tracking often allow
for semiautomatic methods, too. This is, for instance,
the case for both MaMuT and Ilastik.

Limitations

If the data becomes more complex, semiautomatic
methods might struggle to reach an ideal tuning giving
an ideal tracking, even with the feedback from the user.
In these cases switching to more intricate automatic
methods that use heuristics that are well suited for the
system studied or are based on deep learning methods
might be necessary. Moreover, the back and forth be-
tween the user and the algorithm does not necessarily
scale well with the dataset size. If the time it takes for
the algorithm to give feedback to the user becomes too
long or the data too large, fully automatic methods
will start to outperform semiautomatic ones.

Automatic tracking

Manual and semiautomatic methods already go a long
way in supporting researchers in their tracking problems
for data with small or medium numbers of cells. Yet more
and more datasets are outside of the scope of these
methods. This is in part due to the recent trend, in research
ingeneral and inbiomedical research inparticular, toward
larger and larger datasets. As an example, recordings of
developing mouse embryos can contain millions of cells
and reach sizes of multiple terabytes [49]. Moreover, to
be able to make statistically significant statements, often
multiple such samples are necessary. Manually tracking
every cell of such a dataset becomes practically impos-
sible and even semiautomatic methods quickly reach
their limits, especially with growing data complexity.
For instance, the recording of an embryo with 15,000 cells
over 500 frames contains 7.5 million cell snapshots. To
track all the cells of such a dataset manually with an
average of one cell every 4 s this would require over
8000 h of work, which corresponds to 4 years of working
40 h per week, 50 weeks per year. Thus the goal becomes
to automate the process as completely as possible. This
comes with a lot of benefits but also with its own set of
unique challenges. The biggest challenge for the user is
to correctly parameterize and, when using machine
learning methods, to successfully train the algorithm.

There are many different approaches to automatic
tracking, but in one way or another, implicitly or explic-
itly, cells still have to be detected in all frames and linked
over time. In the following sections we will describe
different types of automatic tracking methods.

Two-step methods

As stated before, tracking methods are often split into
two steps. First the detection or segmentation step that
identifies each cell snapshot in each time point of the
dataset. Second the linking step that links cell snapshots
between consecutive frames reconstructing the lineage.
Several approaches exist for the first step, cell detection
and/or segmentation. These methods are mentioned but
not described here:

• Thresholding [2,4,38,45]
• Watershed [18,23,66]
• Deformablemodels: level set [22], deformable mesh [13]
• Laplacian of Gaussian [37,58]
• Graphical models [5,36,59]
• Gaussian mixture model [3]
• Machine learning, especially neural networks

[5,9,57,63,78]

3 JAABAwas initially designed for fly pose recognition and tracking and might not be well suited for cell tracking.
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For the second step, the linking, the goal is to find a
mapping T between objects in consecutive time points.
This mapping matches the snapshot of a cell c at time t
to its corresponding snapshot at time tþ dt. Formally
T is often described as a graph. A graph is a mathemat-
ical structure that is defined by its set of nodes (or
vertices, here a node is a cell snapshot) and its set of
edges that link the nodes (here the ancestry/progeny
relationship). Because of the nature of the ancestry/
progeny relationship specific to cells, this graph has
the particular substructure of a set of trees (forest). T
is usually even more constrained because of the biolog-
ical properties of the system tracked together with the
properties of the imaging modality. For example, most
of the time, because there is no cell fusion, the snapshot
of a cell c can have at most one antecedent at the previ-
ous time. Another example relating to the imaging mo-
dality is that if the time resolution is high enough to
capture all division events, the snapshot of a cell c can
have 0, 1, or 2 successors: 0 in case of apoptosis, 2 in
case of cell division, and otherwise it has 1 successor.
All these constraints can be taken into account when
trying to build such a mapping T . Different types of
methods exist when it comes to cell tracking algorithms.

Nearest antecedent

A first approach to building the cell tracks is to itera-
tively build T by comparing the cells in consecutive time
points and by matching the ones that correspond best. It
is interesting to note that, computationally speaking, if
given two sets of points P1 and P2 (that in our case
would be the sets of cell snapshots at two consecutive
time points), matching all the elements in P1 to its closest
element in P2 could result in a different output than
matching all the elements of P2 to their closest element
in P1. A trivial example for that is showcased in
Fig. 20.9. Because of that property and the fact that
most of the time cells can divide but not fuse, computa-
tional methods usually are designed to calculate and
find the antecedents rather than the successors. To find

the best matching cell snapshot to another cell it is neces-
sary to be able to do pairwise comparisons between
cells. To compare two cells in two consecutive time
frames, a similarity measure S between them is
computed. In the simplest case this measure can be the
(negative) physical Euclidean distance between the (cen-
ter of the) two cells. It can be further refined for
improved matching. For instance, Keller et al. [38] or
Brown et al. [8] add a correlation analysis of the shape
of the nuclei, in StarryNite [4] a constraint on the
maximum number of successors is added. Cell motion
can be exploited in order to improve it by giving a prob-
ability distribution for the position of a cell at some time
t given its previous positions. These and others can be
then combined to form the final similarity measure S.
Its goal is that snapshots of the same cell have a high
similarity while snapshots of two different cells have a
low one. This measure associates a numeric value to
any pair of cells from two consecutive time points.
Finally, T can then be built by mapping every cell at a
given time tþ dt to its nearest one at time t (in terms
of the previously computed similarity measure S). In
other words, the mapping T of a cell ctþdt at time
tþ dt is the cell ct at time t that is the closest to ctþdt ac-
cording to the measure S:

T ðctþdtÞ¼ argmax
cj˛t

S
#
ctþdt; cj

$
¼ ct: (20.5)

Constrained tracking

One major obstacle during tracking is that the detec-
tion performance is often flawed. And even when it is
not, the frame rate is rarely high enough to cover all
potential cell movements, especially during cell divi-
sion. If such problems are a concern, it is better to
use algorithms that can detect these potential errors
and discard the tracks that contain them, correct
them, or prevent them from happening when recon-
structing the tracks. These methods are implemented
as constraints on the mapping (also referred to as

FIGURE 20.9 Remarkable tracking differences for simple cases. (A) Forward (left) or backward (right) linking induces a different mapping.
(B) Result of tracking algorithm based on local optimization, the bottom cell divides into two consecutive time points which is usually unlikely. (C)
Result of a method based on global optimization which prevents consecutive division. The method has the same input as B but the global
optimization process results in different tracks that are more likely to be biologically correct.
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conservation tracking [60]). The constraints can be split
into two categories: logically motivated and biologically
motivated ones. Biological constraints are sometimes
also referred to as moral constraints; some examples are:

• a cell can only divide into two daughter cells
• there is a minimum amount of time that has to pass

between to consecutive division of a cell
• the distance a cell can move between to consecutive

time points is limited

Examples for logical constraints are:

• A cell cannot appear out of nowhere; it has to exist in
the previous frame, has to be the result of a cell
division, or, if that is possible in the setup, has to have
moved in from outside the boundary of the view of
the microscope

• Depending on the type of data a cell might not
disappear into nothing unless, again if that is possible
in the setup, it can move out of the view of the
microscope or undergo apoptosis.

When these constraints are used to detect errors and
discard potential tracks containing them, the final tracks
are checked for adherence of these constraints.

If error correction or prevention is the goal, violations
of such constraints can be penalized within the method
to preclude them from occurring in the final tracks. Such
constraints can be enforced either locally or globally.

Local enforcement usually employs so-called greedy
methods (such as the nearest antecedent methods
described above). These methods are termed greedy
because at each step the currently best option that does
not violate any constraints is selected and once a choice
ismade it cannot be undone. As a result, while thematch-
ing between cells can be optimal locally it might not be
optimal globally, but in general it is significantly faster.
An example of a potential difference between local and
global matching is showcased in Fig. 20.9.

One common way to enforce such constraints glob-
ally is to formulate the problem as a global optimization
problem. These problems have to be formulated in a pre-
cise way but can then be solved by optimized generic
solvers (e.g., SCIP [1] and Gurobi [25]) using methods
such as integer linear programming (ILP) [5,46], flow-
based approaches [5,18], or simulated annealing [16].
Simplified, each possible choice (e.g., adding or
removing a cell snapshot or link) has a (positive or nega-
tive) cost associated with it and a solver tries to find the
overall lowest possible sum of costs (which is called the
objective) while adhering to the constraints. This will
result in the globally optimal solution for the given set
of predictions, costs, and constraints but can potentially
be very slow to the point of being unsolvable in a

reasonable time. Analogously to physical conservation
laws this has also been dubbed conservation tracking
[60] as the system ensures the conservation of certain
properties (e.g., concerning the number of objects)
through the compiled constraints.

A problem that these methods raise is that if the
detection is flawed, a morally or logically sound solution
might not exist at all. If a valid solution does not exist,
the method should still provide a solution that is as
good as possible instead of not providing any solution
at all. Some approaches optionally add some semiauto-
matic/human-in-the-loop aspects (see, for example,
Ilastik and Elephant [69]) so that the decision in such
cases can be verified by a human operator.

One-step methods

As opposed to two-step methods, one-step methods
perform detection and tracking concurrently. This pre-
cludes building a detection or segmentationwhichwould
not give rise to a valid tracking. In contour evolution
methods the objects in a single frame are detected, manu-
ally or automatically, and are then propagated forward or
backward in time frame by frame. The propagation of the
detected cells at a given time t constrains the detection of
the cells at the next time tþ dt. In the algorithm named
Tracking Gaussian Mixture Model (TGMM) [3] the cells
that were detected at time t are used to constrain the
number of cells to be detected and their shapes in
tþ dt. Similarly in the algorithm Automatic Segmenta-
tion and Tracking of Embryonic Cells (ASTECs) [23],
the segmented cells are propagated from one time point
to the next. The propagated cells are compared to the
local, independent segmentation of that next time point.
The algorithm then decides what is the correct shape of
the cells and whether divisions occurred.

Limitations

If correctly parameterized and trained, automatic
methods are extremely powerful. They allow for the
reconstruction of cell tracks from huge datasets and
therefore enable the large-scale analyses that are usually
necessary for cohort or population studies, or for the
validation of mathematical models, for example. This
high-throughput property of automatic methods does
not come for free. The knowledge and time necessary
to parameterize and potentially train these methods
can be immense and should not be overlooked. This is
why it is often better to use manual or semiautomatic
methods instead of fully automatic ones if the amount
of cells to track is small enough or if the complexity of
the dataset is high enough that the parameterization of
automatic methods becomes harder (see Fig. 20.8).
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Deep learningebased approaches

Thanks to the increasing power of computers and the
fact that more datasets are becoming available, more and
more deep learningebased image analysis methods
have been developed since the early 2010s. This trend
has been mainly observed in the area of natural images
(e.g., face and object recognition, tracking of cars, pedes-
trians, and other objects in traffic or public places). In the
more recent years this trend of deep learningebased
approaches has expanded to biological and medical sys-
tems not only for cell detection and tracking as will be
discussed below but also, for example, for image denois-
ing [40,77] or for quantifying the morphology of cells
[81,82]. These methods are getting more numerous and
powerful and, similarly to the situation in other areas,
at least for the time being, are starting to overshadow
most other automatic tracking methods. The following
sections explain the principles of deep learningebased
cell tracking algorithms.

From pedestrian and car tracking to cell tracking in
biomedical images

While the goal of tracking algorithms for natural
images is similar to the one in biomedical images, the
use cases pose different challenges and the solutions
developed for natural datasets are therefore not directly
transferable to biomedical ones. Natural images datasets
are mainly 2D, whereas biomedical datasets predestined
for deep learning often consist of huge 3D volumes.
Natural images datasets usually have significantly fewer
objects to track (typically a few tens or hundreds of
objects) compared to biomedical datasets (up to tens of
thousands of cells). In natural scenes the objects to be
tracked often vary significantly (e.g., cars and humans).
Cells, and especially nuclei, on the other hand are more
similar and sometimes even nearly identical. Moreover,
in natural image datasets, typical objects can only leave
the view of the camera, but they cannot split, as opposed
to cells which split during cell division. And finally,
helping significantly with tracking, the acquisition
frame rate for natural images is often a lot higher
compared to the speed of the tracked objects. This prop-
erty is not observed in biomedical datasets. Usually the
acquisition frame rates for natural data are about 24
frames per seconds or 2880 frames every 2 min while
for biomedical datasets it is more often around 1 frame
every 2 min. Though on the other hand the speed in
pixels per second that an object moves is lower in cell
data, it is not enough to compensate for the reduced
frame rate.

This can be due to a technical limitation of the micro-
scope or to avoid phototoxicity in long recordings. For
similar reasons the signal-to-noise ratio is often quite
low. Natural scene data often consist of millions of

megabyte-sized images, biomedical data of far fewer
images but sometimes each terabyte sized. Finally, the
emphasis placed on different evaluation metrics (e.g.,
speed, accuracy, and ease of use) varies. In certain appli-
cations, for example, autonomous driving, an extremely
low error rate, is required. Similarly this is the case to be
able to answer many biological questions. This can often
only be achieved at the cost of slower speed or more
tunable parameters and precise ground-truth.

The challenges of building a ground-truth

Having correct and extensive ground-truth data is a
strong requirement for deep learning approaches. As a
very general rule of thumb, more ground-truth leads
to better performance. This is particularly important
for more difficult cases, e.g., cell divisions which usually
are much rarer, cells deeper within the tissue that often
have a lower signal-to-noise ratio, and denser areas
where, in the case of stained nuclei, they appear to be
touching, due to the limited spatial resolution of the mi-
croscope. Moreover, potential slight inaccuracies in the
ground truth can lead to mistraining of the algorithm.
For example, in strongly anisotropic data misplacing a
cell by a slice or two would correspond to a large dis-
tance in the metric space. Often a lot of time is necessary
to set up these ground-truth datasets that will be used to
train the algorithm and one has to be careful when
building the ground-truth, especially making sure to
be extensive and error-free.

Detection and segmentation using deep learning

A number of deep learningebased approaches
specialized to cell tracking have been developed in the
last couple of years. As explained above, a major
limiting factor is the need for ground-truth. The cost of
obtaining enough ground-truth data for large, 3D
datasets can be very high. Because of this limitation
the existing methods are largely split into two cate-
gories: first, the segment-and-track category which relies
on segmentation-based ground-truth, and second, the
detect-and-track category which relies on detection-
based ground-truth. This split into two categories is
due to the fact that, as explained earlier, manually
building segmentations are significantly more time-
consuming than manually building detections, that is
because segmentation involves reconstructing the shape
of an object and detection involves “just” detecting the
position of an object. Detection annotations are also
referred to as weak annotations (because they contain
less information). For smaller 2D datasets segment-
and-track approaches already developed for natural
images can be adapted or refined. For example, Chen
et al. [11] extends the popular Mask R-CNN [28]
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framework to tracking by predicting similarity scores for
cells in successive frames. These similarity scores are
similar to the similarity measure S between cells dis-
cussed in Section “Two-step methods” and are adapted
from the Mask R-CNN method. Having a (predicted)
segmentation allows for overlap-based linking, which
is especially powerful for less complex 2D and 3D data.

The quality of the final tracks depends both on the
quality of the segmentation or detection part and on
the quality of the linking part. An improvement in either
usually results in an improvement of the tracks. And the
improvement of segmentation and detection models in
the last few years has been significant. Therefore an
alternative approach is to replace the classical segmenta-
tion or detection part in existing tracking tools with a
deep learningebased model while keeping the original
linking approach unchanged. The core of most currently
used learning algorithms for biomedical data is a U-Net
[57]. Examples are StarDist [63,78], mostly for nuclei or
nucleus-shaped objects (i.e., ellipse or ellipsoid shapes),
and Cellpose [68] or PatchPerPix [30], which also work
for more arbitrarily shaped cells. StarDist predicts, for
each cell, a star-convex polygon or polyhedra (which
limits the types of cells it can be used for to convex cells)
and is applicable in 2D and 3D. In Cellpose a neural
network is trained to predict a topographically smooth
surface in which each valley corresponds to one object.
This surface can then be segmented easily with the
classical watershed algorithm. For linking, we can employ
any modular tracking system. For example, in Ref. [17],
StarDist has been combined with TrackMate. Another op-
tion, in case of segmentation masks, is to load the results
into Ilastik and use their tracking system.

Disadvantages are the usual ones for deep learninge
based systems. To train such a model a decent amount of
ground truth annotations are required. Moreover,
powerful hardware (usually at least a good GPU) and
a lot of model training is necessary. The resulting model
is often specific to the type of data it has been trained on.
Recently a lot of effort has been invested in lowering the
bar of entry to use deep learning models in the area of
biomedical image analysis; ZeroCostDL4Mic [75] can
be used with almost no programming knowledge.

Deep learningebased tracking

However, instead of combining deep learning detec-
tion or segmentation with classical tracking systems,
other systems extend the deep learning aspects into
the linking, too. Many use the detect-and-link approach
and share some similarities. In a nutshell, deep neural
networks are used to both detect cell locations and to
predict links between cells. In a second step some form
of optimization (greedy or linear matching, ILP, etc.) is

used to connect the links over time and potentially to
take certain kinds of errors and inaccuracies in the
predictions into account [27,46,52,69].

In the following we will describe the general concept
in more detail and point to the differences and the gen-
eral difficulties. A model, typically a neural network
such as the U-Net [57], is trained to predict the locations
of all cells in the data; often the network has access to
multiple frames to make use of temporal information.
To detect the cells a mixture of Gaussian blobs placed
at each point annotations is regressed. The maxima of
the prediction corresponds to cell candidates [31].
Then a neural network (the same or a second one, if it
is the same this is referred to as multitask learning, there
are inconclusive reports on the effectivity) predicts the
cells’ locations in the previous frame. Typically, and
similarly to most tracking algorithms; the links are
predicted backwards in time as a cell might have two
successors in the case of a cell division but always has
only a single predecessor. This will usually not directly
result in perfect tracks. The detection network might
produce false positives (overdetection) or false negatives
(miss a cell/under detection). Large location changes,
especially during cell division, might corrupt the output
of the linking network (see Section “How to choose the
best suited type of method”).

Different levels of optimization complexity are
employed to alleviate these issues, from locally optimal
solvers (e.g., greedy) to globally optimal ones (e.g., ILP)
by selecting a subset of detections and links. The final
solution consists of the best (for a particular solver)
valid selection of proposed candidates and their links.
A selection is valid if it adheres to a number of different
constraints (see Section “Two-step methods”).

Future challenges

Cell tracking is a hard problem that is far from being
solved even though there is a large variety of methods
existing already (see Table 20.1 for a small subset of
the existing methods). The main reason why it is so diffi-
cult is that even a very low linking error rate between
consecutive frames results in the breaking of most of
the tracks after few time points (illustrated in
Fig. 20.10; for more details, see Section “How to choose
the best suited type of method”). While manual methods
are less impacted by this difficulty, the always growing
amount of data generated makes these methods ineffi-
cient most of the time. Out of necessity automatic
methods are therefore becoming the method of choice
but the high difficulty of the cell tracking task has side
effects. First, the methods are still not perfect and require
improvement to reach the level of quality necessary to
be used routinely without having to check the quality
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of the results. Second, the methods are becoming more
and more complex and can be difficult to deploy, espe-
cially for nonexpert users. Third, even once deployed,
the methods can be difficult to use, especially when it
comes to their parameterization.

Improving the quality of the results

One (obvious) way to improve the quality of the results
is to improve the quality of the methods in order to

decrease the error rate.Many research groups are currently
working on improving the detection, the segmentation,
and/or the linking processes. One way that seems partic-
ularly promising for cell tracking is to combine detection
or segmentation together with linking. As mentioned in
section “One-step methods” this allows to constrain the
detection by the linking and vice versa. An early method
that applied this concept to large-scale biomedical data
was TGMM [3], a greedy approach: when a link is added
between consecutive cell snapshots, it cannot be altered
within the scope of the algorithm (postcorrection algo-
rithms can still be run). Linajea [46], a newer method
combining detection and tracking, follows a global
approach, considering the tracks in almost their entirety
and by this significantly improving the results.

Another way to improve the quality of the tracking
algorithms is to improve the quality of the images. There
are two options: recording higher-quality images or pre-
processing the time series data before supplying it to the
tracking algorithm. Recording higher-quality time series
requires the recording of completely new data, which is
not always an option, and without significant progress
in the field of microscopy is often not even within the
realm of possible options at all. The remaining option
is preprocessing, this step was not previously discussed
in this chapter as most of the time it is included in the
detection or segmentation algorithms. Nevertheless
new methods, based on deep learning, are being devel-
oped to improve the quality of the images. These
methods (e.g., Refs. [40,44,77]) are becoming more and

FIGURE 20.10 Impact of local errors to the global tracking. The figure shows the average maximum local error rate (or linkage error rate)
that is necessary to obtain a given percentage of fully reconstructed tracks, function of number of time points in a time series. The different curves
show different global error targets. The arrows give examples on ways to read the figure.

TABLE 20.1 Detection, segmentation, and tracking methods
mentioned in this chapter.

Name Method Type Organelle Image type References

ASTEC A S þ L Membrane Fluo, 3D [23]

Cellpose A S only Nuclei Any, 2D/3D [68]

CellProfiler SA/A S þ L Nuclei Any, 2D [10]

Icy SA/A D þ L Nuc, Mem Any, 2D/3D [12]

Ilastik M/SA/A S þ L Nuc, Mem Any, 2D/3D [5]

Linajea A D þ L Nuclei Fluo, 3D [46]

MaMuT M/SA D þ L Nuclei Any, 3D [79]

StarDist A S only Nuclei Any, 2D/3D [63,78]

StarryNite A D þ L Nuclei Fluo, 3D [4]

TGMM A S þ L Nuclei Fluo, 3D [3]

A, Automatic; D, Detection; L, Linking; M, Manual; SA, Semiautomatic;
S, Segmentation.
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more common and greatly help to improve the quality of
the images, in turn helping cell tracking algorithms.

While developing ever better performing algorithms
is necessary, the state-of-the-art methods have reached
a level of quality where improving upon becomes
challenging. New improvements often involve large
amount of work but are also often small steps as testified
by the small improvements observed in the results of
the cell tracking challenge over the past few years (see
Ref. [73] and http://celltrackingchallenge.net/).

A very different approach is to accept that the tracks
are not perfect and to take advantage of the fact that
the tracking results are still usually of extremely high
quality locally. Recent methods such as the Statistical
Vector Flow (SVF) method [49] make use of this property
to reconstruct the probabilistic cell flows across consec-
utive frames, reconstructing cell movements over long
time series. The resulting flow reconstructed in SVF
comes at the cost of losing cell identity information at
cell divisions which can be prohibitive for a lot of
applications.

Accessibility to the methods

Automatic methods can be quite difficult to install
and often require expert knowledge, especially for
methods using Graphical Processing Units (GPUs)
which is the case for most deep learning methods. A
lot of effort has been put for some years now into
making image analysis methods more accessible
through easy-to-install and easy-to-use softwares such
as ImageJ/Fiji [62], Icy [12] or CellProfiler [10] but
similar solution did not exist for deep learning methods
until recently. For example, CLIJ [26] and DeepImageJ
[21] provide easy access to GPU accelerated image
processing tools paving the path toward more accessible
GPU-based tracking methods. Another solution, pro-
posed within the framework of ZeroCostDL4Mic [75],
for example, is to take advantage of the free computa-
tional resources offered in Google Colab to provide
deep learningebased algorithms for biomedical image
analysis (including but not limited to detection, segmen-
tation, and tracking algorithms).

Facilitating the training

One other current drawback of deep learning
methods that was previously mentioned is the fact that
comprehensive ground truth is necessary. In cases
where the datasets are complex it sometimes means
that a large amount of ground truth is necessary. There-
fore, one way toward facilitating the training is to facil-
itate the manual creation of annotations. As mentioned
previously, manual tracking is hard, especially in 3D,
because of the fact that the datasets are projected onto

a computer screen, in 2D. In order to alleviate this
problem, newmethods which allow to visualize datasets
and track their cells in 3D using virtual reality have been
recently developed and are getting more and more pop-
ular. The software [20], for example, not only allows to
visualize the datasets in virtual reality but it also allows
to detect and track cells by using the direction the user is
looking toward. Reducing the amount of ground truth is
also a direction that has been studied recently and that
is promising. Linajea [46], for example, is designed in
such a way that only partial annotation is necessary.

Another way to reduce the amount of annotation
necessary is the use of transfer learning (or domain
adaptation) methods. In transfer learning a model that
has been trained on one task or type of data, is used to
improve the learning process on a different task or data-
set. For example, a model that has been trained on one
type of nuclei is used to initialize a second model that
is to be trained on a different type of nuclei. As objects
often share visual features the two tasks are related
and the knowledge incorporated in the first model can
be a useful foundation for the newmodel. Consequently
fewer annotated examples (ground truth) are required
for good performance. This is a very active field of
research at the moment; Roels et al. [56] apply it to
two different biomedical image datasets; Hsu et al. [32]
even transfer from natural images to biomedical images.

Where do you go from here?

We have the tracks, what now? To quantify and
model cell movement dynamics from time series, as it
was done in the studies from the introduction, for
example, and for further biomedical studies, cell
tracking is a necessary but not sufficient step. Once a
satisfying set of cell tracks has been reconstructed, one
has to extract the quantitative information from it to
then model the observations. Before any quantification,
it is crucial to visualize the resulting tracks, it allows to
make sure that nothing went completely wrong, that
there are no glaring errors in the tracks and to get a first
sense of the behavior of the cells. This first visualization
of the track will develop intuitions on the dataset and
will help to drive the future analyses. Visualizing tracks
can be done with some of the tools mentioned before,
e.g., CellProfiler, ImageJ/FIJI, and TrackMate. But, if
the dataset is more complex, for example, large 3D
time series, these tools might come short. In that case
more specific programs might be considered such as
the previously mentioned MaMuT [79] or software
that is dedicated to visualization such as Morphonet
[43], linus [76], or Napari [65]. To start the quantification
and analysis of the cells and track their properties, some
of the tools discussed in this chapter offer built-in
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methods (CellProfiler, TrackMate, and ImageJ/FIJI, Icy).
Moreover, more effort has been put recently into formal-
izing the quantification of cell dynamics from cell tracks.
For example, in Refs. [24] and [51] or more recently in
Ref. [67]. Still, it is often necessary that the user has to
develop the methods to precisely quantify the specific
phenomenon that they want to observe themself. By
our experience, this quantification part can be equally
difficult as the tracking itself.

Glossary
cell snapshot An instance of a cell in a particular frame of a time

series.
dataset complexity In the context of the chapter, the complexity of a

dataset is tied to multiple factors such as its dimensionality, quality,
temporal and spatial resolution, and its physical properties. The
more complex a dataset, the longer it will take a user to reconstruct
its tracks.

detection When tracking objects, detection is the action or task of
finding the position of the object(s) to track.

false negative In the context of tracking algorithm, false-negative
errors are when the method fails to detect or segment a cell or a
link between two consecutive cells.

false positive In the context of tracking algorithm, false-positive
errors are when the method detects or segments a cell or a link
between two consecutive cells where it should not have.

frame rate Number of images recorded per unit of time (usually sec-
onds for classical video recordings).

Graphical Processing Unit (GPU) Specialized hardware, originally
developed for computer graphics, now routinely used for general
purpose computing, powerful for specific types of computation,
for instance, matrix multiplication, a core operation of machine
learning algorithms.

ground-truth Manual annotations, for example, per image in the form
of labels, or pixelwise in the form of detection or segmentation for
some dataset.

image modality The image modality refers to the method with which
an image was acquired, specifically the type of microscope and the
labeling method.

intensity profile The intensity profile of an object is a list of intensities
taken along one ormultiple lines. It informs about how the intensity
changes along one or several directions. For example, when imaged
with fluorescence microscopy, nuclei usually have an intensity pro-
file which increases from the border of the nuclei to their centers
and decreases afterward. Depending on the labeling method and
the microscopy modality, the intensity profile may vary.

lineage A cell lineage refers to the complete developmental history of
a cell, tissue, or fertilized embryo.

linking When tracking objects, linking is the action or task of connect-
ing two objects (cell snapshots of the same cell) across two time
frames.

model In the context of machine learning model refers to both a spe-
cific system or set of parameters that is to be trained (e.g., a neural
network, decision trees, etc.) and a trained instance of such a
system.

overdetection For detection methods, same as false-positive error.
oversegmentation For segmentation methods, same as false-positive

error.
segmentation When tracking objects, segmentation is the action or

task of finding the object(s) to track and reconstructing their shape.
signal-to-noise ratio Measure that compares the level of a desired

signal to the level of noise in a given image or dataset. If the value

is larger than 1, the signal is higher than the noise. The higher the
measure is, the better the signal is compared to the noise of the
image.

spatial resolution Quantification of the number of measurements
(e.g., pixels or voxels) per spatial unit. The spatial resolution in-
forms about the minimum distance two objects have to be apart
to be resolved. A spatial resolution that is too low would not allow
for the separation of two different cells, for example.

temporal resolution Quantification of the number of measurements
(e.g., images) per temporal unit. A temporal resolution that is too
low would not allow to correctly infer where a cell comes from.

time series Time series refers to a sequence of consecutively recorded
images of a set of cells.

track The sequence of cell snapshots of a single cell along its complete
lifetime.

tracking Tracking is the task of locating objects in a time series and
linking them across time.

underdetection For detection methods, same as false-negative error.
undersegmentation For segmentation methods, same as false-

negative error.
user time The time a user has to personally invest in order to get the

tracking for a given dataset.
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Meijering E, Muñoz-Barrutia A, Kozubek M, Ortiz-de
Solorzano C. An objective comparison of cell-tracking
algorithms. Nat Methods 2017;14(12):1141e52.

[74] Villoutreix P, Delile J, Rizzi B, Duloquin L, Savy T, Bourgine P,
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