
Automated Reconstruction of Whole-Embryo Cell
Lineages by Learning from Sparse Annotations

Caroline Malin-Mayor1, Peter Hirsch2,3, Leo Guignard1,4, Katie McDole1,5, Yinan Wan1,6, William C. Lemon1,
Philipp J. Keller1, Stephan Preibisch1,2, Jan Funke1

1: HHMI Janelia, Ashburn, USA
2: Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, DE

3: Humboldt-Universität zu Berlin, Faculty of Mathematics and Natural Sciences, Berlin, DE
4: Aix Marseille Univ, CNRS, UTLN, LIS 7020, Turing Centre for Living Systems, Marseille, FR

5: MRC Laboratory of Molecular Biology, Cambridge, UK
6: Biozentrum, University of Basel, Basel, CH

F

Abstract—We present a method for automated nucleus identification and track-
ing in time-lapse microscopy recordings of entire developing embryos. Our
method combines deep learning and global optimization to enable complete
lineage reconstruction from sparse point annotations, and uses parallelization
to process multi-terabyte light-sheet recordings, which we demonstrate on three
common model organisms: mouse, zebrafish, Drosophila. On the most diffi-
cult dataset (mouse), our method correctly reconstructs 75.8% of cell lineages
spanning 1 hour, compared to 31.8% for the previous state of the art, thus
enabling biologists to determine where and when cell fate decisions are made in
developing embryos, tissues, and organs.

1 Main
With recent advances in light-sheet imaging techniques, it is pos-
sible to acquire whole embryo developmental datasets over long
time scales with high spatial and temporal resolution in complex
organisms such as mouse, Drosophila, and zebrafish (Wan et al.,
2019a). The resulting datasets contain information required to
track the movement and division of nuclei over time, yielding
lineage trees and quantitative data on cellular dynamics that are
crucial to the study of developmental biology at the cellular
level (Spanjaard and Junker, 2017). However, manually tracing
lineages with dedicated tools like MaMuT (Wolff et al., 2018) or
Mastodon (https://github.com/mastodon-sc/mastodon) is arduous,
and for complex, developing organisms it is only feasible to
annotate a small percentage of all tracks, making automatic cell
tracking necessary for holistic analysis.

Cell tracking algorithms have been developed for and tested
on diverse datasets with different characteristics. While hand-
engineered features are sufficient for cell detection and tracking
in some model organisms (Bao et al., 2006; Amat et al., 2014),
learned dataset-specific features, given sufficient training data,
improve performance for datasets with heterogeneous cell or
nucleus phenotypes and varying imaging statistics over time and
space. In particular, deep learning has been shown to improve
cell detection (Kok et al., 2020; Hayashida et al., 2020), seg-
mentation (Weigert et al., 2020; Cao et al., 2020; Stringer et al.,

2021; Medeiros et al., 2021), and tracking (Sugawara et al., 2021;
Ulman et al., 2017; Moen et al., 2019; Hayashida et al., 2020;
Medeiros et al., 2021) on a variety of datasets. Additionally, it has
been shown that tracking methods that take into account global
spatiotemporal context perform better, especially for datasets with
more movement between time frames (Ulman et al., 2017). Track-
ing by graph optimization over a large spatiotemporal context
allows inclusion of biological knowledge about track length and
cell cycle, improving track continuity (Jug et al., 2016; Haubold
et al., 2016; Kok et al., 2020) and even allowing recovery from
noisy detection and segmentation (Schiegg et al., 2013).

Only a few of the aforementioned cell tracking methods are
readily applicable to the unique challenges posed by contemporary
3D light-sheet datasets, the focus of this work. Practical methods
for this kind of data should take into account temporal and 3D
spatial context, easily scale to multi-terabyte datasets, and ideally
should not require a manual segmentation of cells for training, due
to the time required to generate per-pixel ground truth. Of methods
that fulfill these requirements, Tracking with Gaussian Mixture
Models (TGMM) (Amat et al., 2014) has been shown to work
well on model organisms with approximately ellipsoid nuclei.
More recently, the ELEPHANT tracking platform employed deep
learning for cell detection and per-frame linking in light-sheet
datasets with diverse cell appearance and movement (Sugawara
et al., 2021). ELEPHANT requires a manual pseudo-segmentation
of nuclei by ellipsoid fitting, which takes less time to generate than
a per-pixel manual segmentation, but more than point annotations.

Our method combines global optimization and learned fea-
tures, generating cell lineages through global graph optimization
with learned costs. We show that this combination substantially
decreases tracking error on three diverse datasets of different
model organisms with different temporal resolution, signal to noise
ratio, and nuclear appearance. Features are learned from sparse
point annotations produced by current manual lineage tracking
tools like MaMuT and Mastodon, and thus do not require a
manual segmentation or dense lineage annotations, which allows

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://github.com/mastodon-sc/mastodon
https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

rapid generation of training data. Crucially, the steps of our
method—including the global optimization—can be computed
in a distributed fashion, which is necessary to process multi-
terabyte light-sheet datasets and enable the study of whole embryo
morphogenesis.

An overview of our method is shown in Fig. 1. Because we
are learning features from the data, the method is not tied to a
specific input type or format: we use fused and unfused light-
sheet recordings with a single fluorescent nuclear channel, and
could easily extend to multi-channel input. We use sparse point
annotations to train a convolutional neural network to predict at
each pixel a cell indicator value that peaks at the center of each
nucleus (Höfener et al., 2018; Kok et al., 2020), and a movement
vector that points to the center of the same cell nucleus in the
previous time frame (Hayashida et al., 2020; Sugawara et al.,
2021). From these predictions, we generate a candidate graph
in two steps: first, we place nodes at the local maxima of the
cell indicator values to represent possible cell center locations,
with a score to encode the network’s confidence. Second, we
locally connect nodes in adjacent frames with edges to represent
the possibility that the nodes represent the same cell, and assign
a score to each edge based on agreement with the predicted
movement vector.

Next, we solve a global constrained optimization problem on
the candidate graph to select a subset of nodes and edges that form
coherent lineage trees. We know that between time frames, cells
can move, divide into two, enter or leave the field of view, or die,
but not merge or split into more than two. Thus, we introduce hard
constraints to prevent merging and divisions producing more than
two progeny. The objective function incorporates prior knowledge
that cell movement is much more common than division, death,
and entering or leaving the field of view, encouraging long,
continuous lineages by penalizing the start and end of tracks.
These tree constraints and continuity costs are similar to those
in previous work (Schiegg et al., 2013; Jug et al., 2016; Kok
et al., 2020); however, we also incorporate the node and edge
scores generated by the neural networks into the objective function
as learned costs. Thus, we optimize for valid lineages that are
both continuous and supported by the learned cell location and
movement features. Our Integer Linear Program (ILP) formulation
of the optimization problem additionally allows solving piece-wise
in parallel on large datasets by introducing additional constraints
to ensure consistent solutions between adjacent regions.

We evaluate our method on three sparsely annotated datasets
from different commonly used model organisms to study embryo-
genesis: mouse (McDole et al., 2018), Drosophila (Amat et al.,
2014), and zebrafish (Wan et al., 2019b) (see Supplementary Note
1 for details about the datasets and annotations). We compare
the performance of our method against TGMM, the previous
state-of-the-art method on these datasets (Amat et al., 2014;
McDole et al., 2018), and greedy tracking using a per-frame
nearest neighbor linking algorithm similar to the ELEPHANT
tracking method (Sugawara et al., 2021). We compute multiple
metrics, including the fraction of perfectly constructed lineages
over a range of time periods, and errors per ground truth edge,
broken into the following error types: false negative edges (FN),
identity switches(IS)—when two tracks switch off following the
same cell—false positive divisions (FP-D), and false negative
divisions (FN-D), as illustrated in Fig. 3. False positive edges
cannot be computed using sparse ground truth, because we cannot
tell if unmatched reconstructions are false positives or tracking

unannotated cells, and thus they are not included in our quanti-
tative analysis. We show in Fig. 2 that, with around 20 hours of
ground-truth annotation effort, our method correctly reconstructs
more cell lineages than both baselines over all time ranges for
all datasets. The largest improvement compared to TGMM is on
the mouse dataset: our method correctly tracks 75.8% of mouse
cells over a time span of 1 hour (12 time frames), compared to
31.8% for TGMM. By 175 minutes (35 frames), our method still
correctly tracks more than half of all cells, while TGMM tracks
less than 8%. On all three datasets, our method greatly reduces
false negative edges compared to TGMM, while compared to
the greedy baseline, our method produces far fewer false positive
divisions. Supplementary Note 2 contains a detailed description
of the evaluation metrics and baselines, and further observations
about the performance on various metrics across organisms and
evaluation regions.

Both the candidate graph generation and lineage optimization
steps of our method are fully parallelizable and scale linearly with
the size of the recording, which enables dense lineage reconstruc-
tion on very large datasets in reasonable time. On 20 GPUs and
100 CPU cores, reconstruction of dense lineages took about 44
hours on the 4.7TB mouse dataset, generating more than 7 million
cell detections and 360,000 tracks over the 44 hour recording.
Given the estimates that there are 6 million true cell detections in
the dataset and that an annotator can click on a cell center every 1.5
to 3 seconds, it would take 2500-5000 annotator-hours to manually
trace all lineages in this dataset. The source code of our method is
publicly available, together with training and inference scripts and
extensive documentation (https://github.com/funkelab/linajea).

The ability to densely reconstruct cell lineages in such large,
information-rich datasets opens up vast opportunities for exploring
cell fate dynamics and tissue morphogenesis. Accurately following
cells and their progeny over extended time periods allows identifi-
cation of individual cell behaviors that are not visible with shorter
and less accurate lineages. For example, being able to accurately
track more than half of all cells over a time window of 175 minutes
in the mouse dataset, compared to only 30 minutes with previous
methods, greatly reduces the manual curation needed to test
hypotheses such as the existence of neuromesodermal progenitors
which can produce neural or mesodermal progeny. While further
work is required to improve cell division detection, the dense
cell lineages we publish with this method are a rich source of
information about the development and cell fate dynamics of
common model organisms.

2 Method
2.1 Network Architecture, Training, and Prediction

To attain per-voxel predictions for cell locations and movements,
we use a U-Net architecture with four resolution levels (Ron-
neberger et al., 2015). To incorporate temporal as well as spatial
context, we concurrently feed seven 3D frames centered on the
target time point and use four-dimensional convolutions until, due
to valid convolutions, the time dimension is reduced to one. While
we mostly downsample by (2,2,2), our mouse and Drosophila
datasets are anisotropic, for the first pass we only downsample
by 1 in z. We use 12 initial feature maps and increase by a factor
of 3 at each level. When upsampling, we restrict our upsampling
convolutional kernels to constant values, as we have observed this
reduces artifacts in the output.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://github.com/funkelab/linajea
https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

3D+t Raw Data

t

t

x y z → x y z →

Cell Indicators Movement Vectors

Sparse Point Annotations

x y z →

Candidate Graph

x y z →

ILP Solution

Reconstructed Lineages
a) b)

c) d) e)

f)

Figure 1: Overview of the method, including data and results from the mouse dataset. a) Raw mouse data over 50 time points,
visualized as a max intensity projection. b) Sparse point annotations superimposed over the first frame of the raw data. Purple dots
show the locations of annotated cells in the first time point, and the tails show the movement over time. c) Output of our cell indicator
and movement vector networks. Light grey represents ground truth lineages. The cell indicator is trained to have maxima at the center
of each nucleus, and the movement vector network is trained to predict the relative location of the same cell nucelus in the previous
time point. d) Candidate graph extracted from the network output. Candidate cells are at cell indicator maxima, and nearby cells are
connected with edges that are scored by agreement with the movement vector. e) Consistent lineage trees extracted from the candidate
graph by global optimization using learned features and biological priors. f) Densely reconstructed lineages visualized over the mouse
data.

The cell indicator network is trained on sparse point annota-
tions and predicts the centers of cell nuclei. The training signal for
this network, called the cell indicator value, is a Gaussian with max
value 1 at the cell center annotation and decreasing according to
a hyperparameter σ. With only sparse annotations, it is unknown
if pixels far from cell center annotations are background or cells
that were not annotated. To avoid training on unknown regions,
we construct a training mask around each annotation with a user-
defined radius. This radius should be small enough that the mask
will not overlap with neighboring cells. We only train on the
mean squared error loss within the training mask. We are not
training our cell indicator network on any background regions, so
the behavior is unconstrained in the background. After prediction,
we use local Non-Maximum Suppression (NMS) to extract cell
center candidates, with the goal of detecting all cell centers along
with potential false positives due to the unconstrained background
behavior. The NMS window size is dataset dependent and should
be a bit smaller than the minimal distance between two cell
centers. To reduce the number of false positives, especially in
background regions, we only consider detections with a minimal

cell indicator value, determined empirically for each dataset and
model. Additionally, if a foreground mask is available (as in the
zebrafish dataset) we filter detections to those that lie in the
foreground.

In addition to the cell indicator network, we train a movement
vector network to predict the movement of cells between frames.
For a pixel near to a cell in frame t, the movement vector is a 3D
offset vector that points to the relative location of the center of the
same cell in frame t−1. Predicting the offset to the same cell in the
previous time frame, rather than the next time frame, allows divi-
sions to be represented naturally, since each daughter cell points to
the center of the parent cell. We calculate the loss on two different
masked regions. Loss LA is the mean squared error between the
ground truth and predicted movement vectors, calculated over the
same training mask as the cell indicator network. Loss LB limits
the error to voxels with maximal cell indicator values after NMS
that also are within the training mask. The total loss is the weighted
sum L = αLA + (1 − α)LB, with α = 1

1+exp 0.01(−i+200000)) , and i
being the number of training iterations. This weighting scheme
weights LA higher at the beginning of training, when the cell

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ours

greedy

TGMM

0.033

0.039

0.087

0.009

0.009

0.039

0

0.086

0.037

0.007

0.003

0.006

0.049

0.136

0.169

errors per ground-truth edge

FN IS FP-D FN-D sum

400
420

440
3,050

3,100

350

400

x
y

z

400
420

440
3,050

3,100

350

400

x
y

z

400
420

440
3,050

3,100
350

400

x
y

z

a) b) c) ours:

d) greedy: e) TGMM:
Time frames

Tr
ac
k
ac
cu
ra
cy

Mouse

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

ours

greedy

TGMM

0.028

0.025

0.123

0.016

0.017

0.015

0.002

0.048

0.005

0.003

0.001

0.003

0.05

0.092

0.147

errors per ground-truth edge

FN IS FP-D FN-D sum

200 220 240 260 280 100

120

140
260

280

300

x
y

z

200 220 240 260 280 100

120

140
260

280

300

x
y

z

200 220 240 260 280 100

120260

280

300

x
y

z

a) b) c) ours:

d) greedy: e) TGMM:
Time frames

Tr
ac
k
ac
cu
ra
cy

Drosophila

0 0.05 0.1 0.15 0.2

ours

greedy

TGMM

0.059

0.061

0.19

0.013

0.013

0.006

0.004

0.106

0.007

0.002

0.001

0.002

0.078

0.181

0.205

errors per ground-truth edge

FN IS FP-D FN-D sum

0 20 40 60 80 1,400

1,450

1,500
300

350

x
y

z

0 20 40 60 80 1,400

1,450

1,500
300

350

x
y

z

0 20 40 60 80 1,400

1,450

1,500
300

350

x
y

z

a) b) c) ours:

d) greedy: e) TGMM:
Time frames

Tr
ac
k
ac
cu
ra
cy

Zebrafish

Figure 2: Comparison of tracking errors on three datasets (top to bottom: mouse, Drosophila, zebrafish). a) Average errors per ground-
truth edge for each error type. b) Fraction of error-free tracks for a given track length. c-e) Example ground truth track (green) with
superimposed tracking result (orange or red) for our method, the greedy baseline, and TGMM respectively. Other than the dashed false
positive divisions, we only show detections that matched the selected ground truth track.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

indicator network is still converging, with a smooth transition to
LB at 200000 iterations.

These networks are trained simultaneously for 400000 iter-
ations, with batch size 1. Batches are randomly sampled from
annotated locations, and random augmentations including elastic
deformation, mirroring, transposing axes, and intensity augmenta-
tion are applied using the Gunpowder library (https://github.com/
funkey/gunpowder). Prediction is then performed blockwise using
paralellization over multiple GPUs to process large datasets effi-
ciently. To eliminate edge artifacts, we ensure that our prediction
stride is a multiple of the network downsample factors (Rumberger
et al., 2021).

2.2 Candidate Graph Extraction

After prediction, we create a directed candidate graph G = (V,E)
with nodes that represent possible cell center locations and edges
that represent possible movements of the same cell between
frames. G is expected to contain extra nodes and edges, which
will be filtered out in the final step.

V is the set of NMS detections. Each v ∈ V has a three
dimensional location lv , a time tv , a predicted cell indicator score
sv , and a predicted movement vector mv . We avoid storing the
predicted cell indicators and movement vectors at every pixel by
performing NMS on the cell indicator values during prediction
and only saving the predicted values at the detection.

We construct the set of directed edges E by locally connect-
ing nodes in adjacent frames with edges that point one frame
backwards in time. For each candidate v at time tv , we compute
the predicted location l̂v of the same cell in the previous frame:
l̂v = lv +mv . Then, we add an edge from v to each node candidate
u at time tv − 1 where the predicted distance d̂e = ‖ l̂v − lu ‖2 is
less than a hyperparameter θ. d̂e is stored as a score on each edge.

2.3 Discrete Optimization to Find Linage Trees

We construct a lineage tree by selecting a subset of nodes and
edges from G. We define a vector y =

[
yV , yE

]ᵀ ∈ {0,1} |V |+ |E |
such that each element of the vector corresponds to a node or edge
in G. Then G(y) is the subgraph induced by y that only contains
nodes and edges with corresponding element of y equal to 1.

We then construct a constrained optimization problem that
minimizes the objective

min
y

C(y) s.t. G(y) ∈ T 2,

where T 2 is the set of binary forests and C : y → R assigns a cost
for each set of selected nodes and edges. Thus, the goal is to select
the cost-minimal subset of nodes and edges from G that form a
binary forest.

To simplify the presentation of the cost function, we introduce
two auxiliary indicator vectors of length |V | that can be entirely
derived from y. The indicator for tracks appearing, yA, is 1 for
nodes at the beginning of a track and 0 otherwise. yD represents a
track disappearing and is 1 for leaf nodes at the end of a track. For
a formalization of the definition of these auxiliary vectors from y,
see Section 2.3.1.

With these auxiliary indicator variables, we define a linear cost
function as follows:

C(y) =
〈
c, y

〉
+

〈
cA, yA

〉
+

〈
cD, yD

〉
, (1)

where c =
[
cV , cE

]T is a vector containing the cost for selecting
each node and edge, and cA and cD are vectors containing the cost
of having a track appear (cA) and disappear (dA) at each node.
The appear and disappear costs are constant hyperparameters of
the method, but the predicted cell indicator values and movement
vectors are used to individualize the cost vector c for selecting
each node and edge.

With si as the cell indicator score for node i, we define the
node selection cost for node i as cVi = τ

V + wV si , where wV and
τV are hyperparameters of the method. To encourage selection of
higher cell indicator scores during minimization, wV should be
negative.

Similarly, with d̂i as the distance between the predicted and
actual offsets at edge i, we define the edge selection cost for edge
i as cEi = wE d̂i . Unlike with node scores, wE should be positive
to encourage selection of edges with low scores, since those edges
align better with the predicted cell movement.

To determine the optimal values of the ILP hyperparameters
cA, cD , τV , wV , and wE , we performed a grid search where we
fixed cD = 1 to eliminate redundant solutions. We selected the
hyperparameter set that minimized the sum of errors over the
validation set (Supplementary Note 2).

2.3.1 Integer Linear Program Formulation
We use an Integer Linear Program (ILP) to solve the constrained
optimization problem with the Gurobi solver (Gurobi Optimizer,
2021). The objective is the cost function C(y) (Equation 1 in
Section 2.3). To ensure a binary forest with correctly set auxiliary
variables, we implement three kinds of constraints: consistency,
continuation, and split constraints.

The consistency constraint requires that if an edge is selected,
the incident nodes are selected as well. This constraint for edge
e = (v,u) is represented by the equation 2ye − yv − yu ≤ 0.

Two continuation constraints ensure that either the track con-
tinues or the node is marked as the beginning or end of the track.
Let Pv be the set of edges from node v in time tv to nodes in
tv − 1, and Nv be the set of edges from tv + 1 to v. We define the
appear continuation constraint as

∑
p∈Pv

yp+y
A
v −yv = 0, ensuring

that if node v is selected, either there is one selected edge to time
tv−1 or the appear indicator is set to 1. Additionally, we define the
disappear continuation constraint as

∑
n∈Nv

−1yn − yDv + yv ≤ 0 to
ensure that either at least one edge to time tv + 1 is selected or the
disappear indicator is set to 1.

Finally, the split constraint ensures that the number of selected
incoming edges is ≤ 2, i.e., for each node v:

∑
n∈Nv

yn+y
D
v −2yv ≤

0.

2.3.2 Processing Large Volumes Blockwise
Ideally, we would solve the ILP for the whole candidate graph
at once to obtain a globally optimal solution. However, for large
volumes this is too time and memory intensive. Therefore, to
obtain lineage trees for arbitrarily large volumes, we divide the
candidate graph into a set of blocks B that tile the whole volume
and use multiple processes to solve the ILP for many blocks in
parallel.

Solving each block b ∈ B completely independently can result
in discontinuities in tracks between blocks, and the constraints
would no longer be assured at the boundaries. To ensure a
consistent, valid solution across the whole volume, we allow each
process to view a context region around the target region b that
must be at least as large as the amount a cell can move in space and

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://github.com/funkey/gunpowder
https://github.com/funkey/gunpowder
https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

time. Let b̂ be the union of b and the surrounding context area. A
process reads all nodes and edges in b̂, solves the ILP, and writes
the result for only the target region b into a central database. If
the database already contains results in the context region, these
selections will be introduced as further constraints into the ILP,
ensuring the solution will be consistent across boundaries. At the
block boundaries, we set the appear and disappear costs to zero,
because we do not want to penalize solutions that cross block
boundaries.

The introduction of a context region introduces dependencies
between neighboring blocks, and thus they cannot be run triv-
ially in parallel. By ensuring that overlapping blocks are never
run simultaneously using the Daisy library (https://github.com/
funkelab/daisy), we ensure a valid, consistent global solution while
retaining a high degree of parallel processing. While there is no
guarantee of global optimality, with a large enough context region,
we assume that nodes and edges further away do not affect the
local solution in a target region.

3 Supplementary Note 1: Datasets and Annota-
tions
We test our cell tracking method on time-lapse light-sheet record-
ings from three common model organisms: Drosophila, mouse,
and zebrafish. We call these datasets Droso, Mouse, and ZFish,
respectively, and summarize some relevant information about them
in Table 1. Each dataset records a fluorescent nuclear marker: for
ease of discussion, we will refer to each nucleus as corresponding
to a single cell. While two of the datasets, Droso and Mouse, have
a single view of the organism, the ZFish contains two orthogonal,
registered but unfused views. To enable treating these views as
interchangeable inputs to our networks, we resample them to
isotropic resolution.

We use sparse point annotations to train our method. As we
leverage annotations originally performed for biological analysis,
the annotated lineages are not randomly distributed, instead focus-
ing on the developing nervous system of each organism. Although
not necessary for training purposes, annotators ensured that lin-
eages were fully traced by following a cell and all subsequent
progeny until they were no longer visible. Thus, there are more
annotations in later frames of each recording. See Table 1 for the
number of cells and divisions annotated in each dataset.

For each organism, we divide the available annotations by
time, location, and lineage into train, validation, and test sections,
and report results on each split of the data individually, as well as
averaged across splits as a form of k-fold cross validation. Cells
in Drosophila and zebrafish rarely cross the center line of the
organism, so we split the lineages into two groups based on side,
discarding a small number of zebrafish lineages that did cross the
center line. We then train two models using lineages from each
side, leaving out 50 central time frames (200-250 for Droso, 150-
200 for ZFish) for validation. We test each model on lineages from
the side that was not used for training. Table 2 shows the number
of cells and divisions in each train, validation, and test region for
Droso and ZFish.

Within a developing mouse embryo, there is not a clearly
defined center line that cells do not cross. Thus, instead of splitting
lineages into groups by region, we define three sections of Mouse
by time frame: "early" (50-100), "middle" (225-275), and "late"
(400-450). Due to extensive embryonic development over the 44
hour recording, early, middle, and late stages represent different

FN
IS FP-D FN-D

Figure 3: Diagram illustrating the four kinds of tracking errors
used in our analysis: false negative edges (FN), identity switches
(IS), false positive divisions (FP-D) and false negative divisions
(FN-D). False positive edges are not pictured, as they cannot
be determined from sparse ground truth. Red graphs represent
ground truth tracks and green reconstructed tracks, while blue
lines represent edges that are matched between the ground truth
and reconstructed tracks.

cell environments and organization, and there are far more cells
by the end of the recording than at the early stages. Each model
is trained leaving out two of those sections, one for validation and
one for testing. This is repeated for all combinations of validation
and testing, resulting in six total train/validation/test splits. The
number of cells and division in each Mouse split is shown in
Table 3.

4 Supplementary Note 2: Evaluation
4.1 Metrics
Cell lineages can be used for a wide variety of analyses, and
different kinds of errors can affect downstream results differently;
therefore, reducing performance of a tracking method to a single
number that represents "overall performance" is generally not
possible. Therefore, we distinguish five types of tracking errors:
false positive edges (FP), false negative edges (FN), identity
switches (IS)—when one reconstructed track takes over following
a cell from another reconstructed track—false positive divisions
(FP-D) and false negative divisions (FN-D), as shown in Fig. 3.
To allow comparison across datasets, we normalize the number of
errors by the number of ground truth edges, resulting in an errors
per edge metric. Additionally, we compute the fraction of ground
truth lineages that were perfectly reconstructed over T time points,
for a range of values for T. Ground truth segments over time T
were identified using a sliding window of time T over the whole
evaluation region, splitting at divisions only when they occur
in the first frame of the window. Matched reconstructions were
considered perfect when none of the error types above occurred
over the course of the window.

Evaluating with sparse point annotations presents two unique
challenges. First, we cannot determine false positive edges, so we
omit this error type from our analysis. Due to the non-maximal
suppression window used when extracting cell candidates, our
method cannot naively minimize the false negative edge metric
by extreme overdetection of false positive cells. However, false
positive tracks can still appear, and without dense annotations
we are limited to qualitative analysis. Second, we cannot use
segmentation overlap to match ground truth to reconstructed cells.
Instead, we choose a matching threshold that is a bit larger than
the radius of a nucleus in the dataset. Considering only nodes
within this threshold as potential matching endpoints, we pair

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://github.com/funkelab/daisy
https://github.com/funkelab/daisy
https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Dataset Time (h) Time Step
(min) Size Annotated

Points
Annotated
Divisions

Droso 3.75 0.5 86 GB 75,745 299
Mouse 44.33 5 4.7 TB 37,009 148
ZFish 9.125 1.5 2.1 TB 34,530 88

Table 1: Summary information about the three datasets used to develop and evaluate our method.

Split Train Validate Test
Droso side 1 30415 (96) 7443 (54) 38156 (149)
Droso side 2 30839 (107) 7596 (42) 37589 (150)
ZFish side 1 11919 (29) 2159 (6) 14535 (35)
ZFish side 2 12281 (33) 2346 (2) 13996 (35)

Table 2: Number of annotated cells (divisions) used for training,
validation, and evaluation in Droso and ZFish. Sides of the
organisms were arbitrarily labeled 1 and 2, and each split is named
for the evaluation side.

Split Train Validate Test
early 1 33744 (132) 3178 (13) 309 (3)
early 2 30509 (109) 6413 (36) 309 (3)
middle 1 33744 (132) 309 (3) 3178 (13)
middle 2 27640 (99) 6413 (36) 3178 (13)
late 1 30509 (109) 309 (3) 6413 (36)
late 2 27640 (99) 3178 (13) 6413 (36)

Table 3: Number of annotated cells (divisions) used for training,
validation, and evaluation in Mouse. Splits are named for the
evaluation set, so early 1 and early 2 are both evaluated on the
early section.

ground truth and reconstruction edges using Hungarian Matching
to minimize the sum of endpoint distance. Both reconstruction and
ground truth edges can be matched to a dummy edge, allowing
detection of false negative ground truth edges and reconstructions
that do not match to any ground truth.

In addition to evaluating tracking performance, we examine the
performance of the cell indicator and movement vector networks.
The efficacy of the cell indicator model is determined by the cell
recall, or the percent of ground truth cells that have a cell indicator
maxima within the matching threshold. To evaluate the quality of
the movement vectors, we find the closest cell indicator maxima
for each ground truth node (within the matching threshold) and
compute the distance between the parent location predicted by the
movement vector at that maxima and the actual parent location.
We use the "no movement" prediction as a baseline, to simulate
the assumption that cells stay in the same place.

4.2 Baselines
Due to the size of our datasets and nature of our ground truth,
we can only compare against cell tracking methods that can be
run efficiently on multi-terabyte 3D datasets, and that do not
require dense annotations or segmentations for training. Tracking
with Gaussian Mixture Models (TGMM) (Amat et al., 2014) was
previously run on certain time regions of Droso and Mouse,
and we were able to extend those results to the full time series.
Because TGMM cannot process multi-channel input, for ZFish we
produced tracks for each of the two views separately, and reported
the best result for each evaluation region. More recently, the track-
ing method included in the ELEPHANT framework has potential
to be scalable to multi-terabyte datsets (Sugawara et al., 2021).

The cell detection step requires sparse nuclear segmentations by
manual ellipsoid fitting, preventing us from comparing directly
with the full method, so instead we run a greedy nearest-neighbor
linking algorithm inspired by this work on our cell candidates.
Starting in the final frame t, we consider all cell candidates to
be part of a track. We then greedily select edges from t to t − 1
with the smallest difference between predicted and actual offset,
enforcing the constraint that cells cannot divide into more than two
by removing edges that connect to nodes in t − 1 that already have
two selected incoming edges. We then process each subsequent
pair of frames going back in time, first extending existing tracks,
and then creating new tracks if any valid edges remain.

4.3 Results

Fig. 2 shows the sum of errors per edge for each organism,
averaged over the train/validation/test splits. Across all datasets,
our method produces significantly fewer errors per edge than
TGMM and the greedy baseline, with the greedy baseline landing
between TGMM and our method. Our method performs similarly
between Mouse and Droso (0.049 and 0.050 total errors per edge)
and slightly worse on ZFish (0.078).

Considering individual types of errors provides more insight
into the performance of the different methods. For both TGMM
and our method, false negative edges (FN) are the most common
error type. In every case, our method produces fewer FN and fewer
false positive divisions (FP-D) than TGMM. The false negative
division (FN-D) performance is similar between our method and
TGMM - in absolute numbers, neither our method nor TGMM
correctly identifies more than a third of the divisions, but divisions
are so underrepresented in the evaluation sets that this error type
does not significantly affect the overall sum of errors. On Mouse,
our method does not produce any divisions, and thus the FP-D rate
is always zero, while TGMM has a very high FP-D rate and still
does not detect many of the true divisions.

While our method does not always have fewer identity switches
(IS) than TGMM, exmaning performance by dataset shows clear
trends. For Mouse, our method always produces fewer IS than
TGMM. However, for Droso and ZFish, TGMM produces hardly
any IS, likely due to the high number of FN. Since an IS can only
occur when two neighboring ground truth edges are matched to
different reconstructed tracks, a high number of FN reduces the
opportunities for IS to occur. Our method significantly reduces the
number of FN on these datasets, resulting in slightly more IS than
TGMM but fewer overall errors.

Fig. 2 also shows the track accuracy, or fraction of perfectly
reconstructed tracks, for a range of track lengths. For length 1, this
metric is the fraction of false negative edges, and thus our method
and greedy outperform TGMM. However, as the time window
increases, the greedy method’s track accuracy drops quickly for
all datasets, reflecting the lack of global track optimization in
this per-frame tracking algorithm. TGMM’s accuracy is similar
to the greedy baseline on Mouse, but for Droso and ZFish,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

the slope of the decline is much flatter, indicating that TGMM
perfectly reconstructs more long track segments on these datasets.
Combining the fairly high track accuracy of TGMM with the large
number of false negative edges, we can infer that on Droso and
ZFish, TGMM’s errors are grouped together, resulting in some
tracks being faithfully reconstructed and others missed completely.
Our method has the highest track accuracy across all datasets, with
a similar rate of decline as TGMM on Droso and ZFish but a
higher starting accuracy.

To examine differences in performance between models trained
and evaluated on tracks from different regions, we show results for
each train/test split described in Supplementary Note 1 in Fig. 4
(errors per edge) and Fig. 5 (track accuracy). Due to the cross
validation used for Mouse, we have results from two models for
each evaluation region, with each model trained and validated on
different data splits. For both sum of errors and track accuracy,
the models that were trained on more data (early 1, middle 1,
and late 1 as shown in Table 3) performed slightly better than
those trained on less. The sum of errors also slightly increased
for our method from early to late regions on Mouse, reflecting
increasing difficulty of the task over time, although overall trends
about relative performance and error types between our method
and the baselines hold. Droso shows similar results between
the two evaluation regions, but the same is not true for ZFish.
TGMM performs much better on ZFish side 2 than side 1 in
both track accuracy and sum of errors. Indeed, on side 2, TGMM
and our method have a similar track accuracy, while TGMM
performance on side 1 degrades significantly using both metrics.
Manual examination of the raw data shows that the tracks on side
1 are harder for a human to identify due to less clear signal on
that side of the dataset; thus, the relative results indicate that
our method is more robust to varied imaging conditions than
TGMM. Unexpectedly, the greedy baseline performs worse on the
easier side 2. To explain this, we observe that the cell indicator
model for side 2 predicts significantly more candidate cells, and
more false positive candidates, than the model for side 1, likely
due to randomness in the training pipeline (see Supplementary
Note 3). The greedy method creates many false positive divisions
involving those candidates, while ours does not, showing that
the optimization step can extract coherent tracks from a noisy
candidate graph.

Fig. 6 shows the standalone performance of the cell indicator
and movement vector networks. Cell recall for all mouse and
Drosophila models exceeds 0.99, indicating that nearly all ground
truth cells in these datasets have a nearby candidate cell. Recall is
slightly lower for both zebrafish models, but still exceeds 0.96. The
movement vector network has a smaller mean distance between
predicted and actual parent location than the baseline for all
models, and the distribution of distances is concentrated closer to
zero. The mouse cells move further on average than theDrosophila
and zebrafish cells, so the magnitude of improvement compared for
mouse is greater. The max distance is higher for our model than the
baseline in all but one case, indicating that in the scenarios where
cells move the most, such as after division, the movement vector
network can point the wrong way. However, overall the movement
vector network tends to point in the direction of the parent, as
expected.

5 Supplementary Note 3: Ablation Study
Our training method contains multiple sources of randomness,
from batch sampling to augmentation. To determine the effect of
this randomness, we train, validate, and test the same model five
times. The results shown in Fig. 7a illustrate that random batch
selection and augmentation in training do affect tracking perfor-
mance. The sum of errors and distribution of errors between false
negative edges and identity switches vary substantially between
the five models.

In addition to our standard model, we test three changes to
architecture, sampling, and augmentation. In our U-Net archi-
tecture, we experiment with two different upsampling methods:
with and without limiting the transpose convolutional kernel to
a kernel of ones. We call these two upsampling methods trans-
pose upsampling (TU) and constant upsampling (CU). Because
divisions are underrepresented in the training data and particularly
difficult, we try sampling batches specifically at divisions 25% of
the time (+D). We also simulate more cell movement by adding
a random shift augmentation between the previous frame and the
target frame (+S).

Results for each combination of these training and architecture
variations on one Mouse split are shown in Fig. 7b. To draw
conclusions about the effect of any of these variations, the resulting
change in performance has to be greater than the effect of random
retraining shown in Fig. 7a. In general, none of the models
produced a large, consistent difference in tracking score, although
division sampling seems to produce worse results in general. Due
to training time and expense, we were not able to train every model
in the ablation study multiple times or on every dataset, which
would have allowed more conclusive comparisons. While further
exploration into architecture and training decisions could yield
incremental improvements, these initial results are insufficient to
incorporate any of the three changes into our main model.

6 Supplementary Discussion
Using deep learning allows the method to adapt to different imag-
ing conditions and organisms, and boosts performance compared
to a heuristic approach as shown by the comparative performance
of TGMM and the greedy baseline. However, deep learning in gen-
eral requires annotated training data, which can be time consuming
and costly to acquire. Our method minimizes the annotation
burden by leveraging sparse point annotations in segments as short
as two frames. Furthermore, the amount of training data required
is reduced because the models do not need to achieve perfect
performance: the global optimization can filter out superfluous
detections and ignore individual inaccuracies in favor of global
evidence and biological priors. Based on our results, between 10
and 30 thousand sparse point annotations created with MaMuT
or Masodon would be sufficient to train a model to track cells
in new organisms or imaging conditions. Assuming each point
annotation can be generated in 3 seconds, sufficient training data
can be produced in 8 to 24 hours of manual annotation.

While the optimization step filters out some false positive can-
didate detections in the backround, even better performance could
be achieved by including negative examples in training. While we
cannot quantitatively measure false positives when evaluating with
sparse annotations, qualitative analysis of the results showed that
the cell indicator network does predict false positives, especially
in regions with high intensity but no discernible nuclei. When
these false positive candidates persist through multiple frames,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

they can be linked to create false positive tracks. Incorporating
our cell indicator model into the ELEPHANT interactive training
and annotation framework (Sugawara et al., 2021) is a possible
solution, since annotators could easily generate negative training
examples in regions where the network most needs guidance.
Using targeted negative examples, we expect the cell indicator
network could learn to suppress cell prediction in these high
intensity regions with limited fine-tuning.

When applying our method to a new dataset, one bottleneck of
the method is the need to grid search the hyperparameters of the
ILP. Even with blockwise processing, solving the ILP on the whole
validation set takes tens of minutes per run, so we limited the grid
search to four values per hyperparameter, resulting in 256 runs.
We were guided by experience in choosing the range of values to
search, but there is no guarantee that our solution was optimal, or
that the same range would apply to different datasets. In the future,
we will examine alternatives to grid searching a manually selected
range of values, such as using a structured support vector machine
to find the best set of ILP parameters on a given dataset.

Finally, identifying divisions is an important question for
developmental analysis, but divisions are underrepresented com-
pared to non-dividing cells, and have distinct movement and
appearance. To address the difficulties that divisions present,
we tried sampling divisions more frequently during training and
adding a shift augmentation to mimic the movement of dividing
cells, as discussed in Supplementary Note 3. However, even with
these tactics, our method does not consistently identify divisions.
One possible explanation is that the failure to identify divisions
occurs in the optimization step, while our interventions focus on
improving network predictions. During validation, we choose the
ILP hyperparameters that minimize the sum of all error types.
The underrepresentation of divisions in the validation set means
that false negative divisions do not contribute heavily to the sum
compared to false negative edges or even false positive divisions.
Minimizing sum of errors thus can lead to models that select very
few divisions, as long as the other error categories are minimized.
Focused efforts to improve division performance will be necessary
to attain reliable results.

Acknowledgements

We thank William Patton and Tri Nguyen for supporting the Gun-
powder and Daisy libraries, Steffen Wolf for his guidance and
feedback, and Nils Eckstein, Julia Buhmann, and Arlo Sheridan
for helpful discussions. Funding This work was supported by
Howard Hughes Medical Institute. K.D. was supported by the
Medical Research Council, as part of United Kingdom Research
and Innovation [MCUP1201/23]. P.H. was supported by HFSP
grant RGP0021/2018-102, the MDC Berlin-New York Univer-
sity exchange program, and the HHMI Janelia Visiting Scientist
Program. Author contributions Conceptualization: Jan Funke,
Philipp J. Keller. Funding acquisition: Jan Funke, Philipp J. Keller,
Stephan Preibisch, Katie McDole, Peter Hirsch. Software: Caroline
Malin-Mayor, Peter Hirsch, Jan Funke, Leo Guignard. Validation
and evaluation: Caroline Malin-Mayor Data and annotation gen-
eration: Katie McDole, Yinan Wan, William C. Lemon. Super-
vision: Jan Funke, Stephan Preibisch, Philipp J. Keller. Writing -
original draft: Caroline Malin-Mayor, Jan Funke. Writing - review
& editing: Caroline Malin-Mayor, Jan Funke, Philipp J. Keller,
Katie McDole, Stephan Preibisch, Peter Hirsch, Leo Guignard.

References

Amat, F., Lemon, W., Mossing, D. P., McDole, K., Wan, Y., Branson,
K., Myers, E. W., and Keller, P. J. (2014). Fast, accurate recon-
struction of cell lineages from large-scale fluorescence microscopy
data. Nature Methods, 11(9):951–958.

Bao, Z., Murray, J. I., Boyle, T., Ooi, S. L., Sandel, M. J., and
Waterston, R. H. (2006). Automated cell lineage tracing in
Caenorhabditis elegans. Proceedings of the National Academy of
Sciences, 103(8):2707–2712.

Cao, J., Guan, G., Ho, V. W. S., Wong, M.-K., Chan, L.-Y., Tang, C.,
Zhao, Z., and Yan, H. (2020). Establishment of a morphological
atlas of the Caenorhabditis elegans embryo using deep-learning-
based 4D segmentation. Nature Communications, 11(1):6254.

Gurobi Optimizer (2021). https://www.gurobi.com/.
Haubold, C., Aleš, J., Wolf, S., and Hamprecht, F. A. (2016). A

Generalized Successive Shortest Paths Solver for Tracking Dividing
Targets. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors,
Computer Vision – ECCV 2016, volume 9911, pages 566–582.
Springer International Publishing, Cham.

Hayashida, J., Nishimura, K., and Bise, R. (2020). MPM: Joint
Representation of Motion and Position Map for Cell Tracking.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3822–3831.

Höfener, H., Homeyer, A., Weiss, N., Molin, J., Lundström, C. F.,
and Hahn, H. K. (2018). Deep learning nuclei detection: A simple
approach can deliver state-of-the-art results. Computerized Medical
Imaging and Graphics, 70:43–52.

Jug, F., Levinkov, E., Blasse, C., Myers, E. W., and Andres, B. (2016).
Moral Lineage Tracing. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5926–5935.

Kok, R. N. U., Hebert, L., Huelsz-Prince, G., Goos, Y. J., Zheng,
X., Bozek, K., Stephens, G. J., Tans, S. J., and Zon, J. S. v. (2020).
OrganoidTracker: Efficient cell tracking using machine learning and
manual error correction. PLOS ONE, 15(10):e0240802.

McDole, K., Guignard, L., Amat, F., Berger, A., Malandain, G.,
Royer, L. A., Turaga, S. C., Branson, K., and Keller, P. J. (2018).
In Toto Imaging and Reconstruction of Post-Implantation Mouse
Development at the Single-Cell Level. Cell, 175(3):859–876.e33.

Medeiros, G. d., Ortiz, R., Strnad, P., Boni, A., Maurer, F., and Liber-
ali, P. (2021). Multiscale light-sheet organoid imaging framework.
bioRxiv, page 2021.05.12.443427.

Moen, E., Borba, E., Miller, G., Schwartz, M., Bannon, D., Koe,
N., Camplisson, I., Kyme, D., Pavelchek, C., Price, T., Kudo, T.,
Pao, E., Graf, W., and Valen, D. V. (2019). Accurate cell tracking
and lineage construction in live-cell imaging experiments with deep
learning. bioRxiv, page 803205.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolu-
tional networks for biomedical image segmentation. In Medical
Image Computing and Computer-Assisted Intervention (MICCAI),
volume 9351 of LNCS, pages 234–241. Springer.

Rumberger, J. L., Yu, X., Hirsch, P., Dohmen, M., Guarino, V. E.,
Mokarian, A., Mais, L., Funke, J., and Kainmueller, D. (2021).
How Shift Equivariance Impacts Metric Learning for Instance
Segmentation. arXiv:2101.05846 [cs, eess].

Schiegg, M., Hanslovsky, P., Kausler, B. X., Hufnagel, L., and
Hamprecht, F. A. (2013). Conservation Tracking. In 2013 IEEE
International Conference on Computer Vision, pages 2928–2935,
Sydney, Australia. IEEE.

Spanjaard, B. and Junker, J. P. (2017). Methods for lineage tracing on
the organism-wide level. Current Opinion in Cell Biology, 49:16–
21.

Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021).
Cellpose: a generalist algorithm for cellular segmentation. Nature
Methods, 18(1):100–106.

Sugawara, K., Cevrim, C., and Averof, M. (2021). Tracking cell
lineages in 3D by incremental deep learning. bioRxiv, page
2021.02.26.432552.

Ulman, V., Maška, M., Magnusson, K. E. G., Ronneberger, O.,
Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Rado-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://www.gurobi.com/
https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

jevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk,
O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S.-Y., Dufour, A. C., Olivo-
Marin, J.-C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch,
R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A.,
Esteves, T., Quelhas, P., Demirel, Ö., Malmström, L., Jug, F.,
Tomancak, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M.,
and Ortiz-de Solorzano, C. (2017). An objective comparison of
cell-tracking algorithms. Nature Methods, 14(12):1141–1152.

Wan, Y., McDole, K., and Keller, P. J. (2019a). Light-Sheet
Microscopy and Its Potential for Understanding Developmental
Processes. Annual Review of Cell and Developmental Biology,
35(1):655–681. Publisher: Annual Reviews.

Wan, Y., Wei, Z., Looger, L. L., Koyama, M., Druckmann, S., and
Keller, P. J. (2019b). Single-Cell Reconstruction of Emerging Pop-
ulation Activity in an Entire Developing Circuit. Cell, 179(2):355–
372.e23.

Weigert, M., Schmidt, U., Haase, R., Sugawara, K., and Myers,
G. (2020). Star-convex Polyhedra for 3D Object Detection and
Segmentation in Microscopy. In 2020 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 3655–3662,
Snowmass Village, CO, USA. IEEE.

Wolff, C., Tinevez, J.-Y., Pietzsch, T., Stamataki, E., Harich, B.,
Guignard, L., Preibisch, S., Shorte, S., Keller, P. J., Tomancak,
P., and Pavlopoulos, A. (2018). Multi-view light-sheet imaging and
tracking with the MaMuT software reveals the cell lineage of a
direct developing arthropod limb. eLife, 7:e34410.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

ours

greedy

TGMM

0.023

0.033

0.106

0.003

0

0.017

0

0.086

0.017

0.01

0

0.01

0.037

0.12

0.15

errors per ground-truth edge

FN IS FP-D FN-D sum

(a) Mouse early 1

0 0.05 0.1 0.15 0.2

ours

greedy

TGMM

0.031

0.035

0.093

0.011

0.012

0.045

0

0.074

0.04

0.004

0

0.003

0.046

0.122

0.181

errors per ground-truth edge

FN IS FP-D FN-D sum

(b) Mouse middle 1

0 0.05 0.1 0.15 0.2

ours

greedy

TGMM

0.042

0.041

0.063

0.01

0.011

0.054

0

0.064

0.054

0.006

0.002

0.004

0.058

0.119

0.176

errors per ground-truth edge

FN IS FP-D FN-D sum

(c) Mouse late 1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

ours

greedy

TGMM

0.027

0.04

0.106

0.003

0.003

0.017

0

0.096

0.017

0.01

0.01

0.01

0.04

0.15

0.15

errors per ground-truth edge

FN IS FP-D FN-D sum

(d) Mouse early 2

0 0.05 0.1 0.15 0.2

ours

greedy

TGMM

0.035

0.038

0.093

0.011

0.013

0.045

0

0.097

0.04

0.004

0.001

0.003

0.05

0.149

0.181

errors per ground-truth edge

FN IS FP-D FN-D sum

(e) Mouse middle 2

0 0.05 0.1 0.15 0.2

ours

greedy

TGMM

0.041

0.045

0.063

0.014

0.013

0.054

0

0.097

0.054

0.006

0.003

0.004

0.061

0.157

0.176

errors per ground-truth edge

FN IS FP-D FN-D sum

(f) Mouse late 2

0 0.02 0.04 0.06 0.08 0.1 0.12

ours

greedy

TGMM

0.025

0.023

0.104

0.015

0.016

0.005

0.003

0.052

0.004

0.003

0.001

0.003

0.046

0.092

0.115

errors per ground-truth edge

FN IS FP-D FN-D sum

(g) Droso side 1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

ours

greedy

TGMM

0.031

0.027

0.146

0.017

0.019

0.007

0.002

0.045

0.004

0.003

0.001

0.003

0.053

0.092

0.161

errors per ground-truth edge

FN IS FP-D FN-D sum

(h) Droso side 2

0 0.05 0.1 0.15 0.2 0.25 0.3

ours

greedy

TGMM

0.074

0.071

0.263

0.012

0.012

0.006

0.001

0.074

0.007

0.002

0.001

0.002

0.09

0.158

0.279

errors per ground-truth edge

FN IS FP-D FN-D sum

(i) ZFish side 1

0 0.05 0.1 0.15 0.2

ours

greedy

TGMM

0.044

0.051

0.118

0.014

0.014

0.005

0.006

0.137

0.007

0.002

0.001

0.002

0.066

0.204

0.132

errors per ground-truth edge

FN IS FP-D FN-D sum

(j) ZFish side 2

Figure 4: Errors per edge for our method, the greedy baseline, and TGMM, on all datasets and evaluation regions.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

(a) Mouse early 1 (b) Mouse middle 1 (c) Mouse late 1

(d) Mouse early 2 (e) Mouse middle 2 (f) Mouse late 2

(g) Droso side 1 (h) Droso side 2

(i) ZFish side 1 (j) ZFish side 2

Figure 5: Fraction of ground truth segments correctly reconstructed over t time frames, for a range of t, on all datasets and evaluation
regions.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

(a) cell indicator network (b) movement vector network

Figure 6: Performance of the cell indicator and movement vector networks. (a) Recall of cell indicator networks, as measured by the
number of ground truth annotations in the evaluation set that have a cell indicator maxima within the matching threshold. (b) The
distance between the predicted parent locations and actual parent locations for each ground truth cell with a matched candidate within
the matching threshold, represented as a violin plot with hashes at the min, max and median values. Baseline of no movement is shown
in blue, and our predicted movement vectors are shown in orange.

0 1 2 3 4 5 6 7

·10−2

A

B

C

D

E

0.041

0.041

0.045

0.038

0.037

0.014

0.013

0.012

0.013

0.013

0

0

0

0

0

0.006

0.006

0.006

0.006

0.006

0.061

0.059

0.063

0.057

0.055

errors per ground-truth edge

FN IS FP-D FN-D sum

(a) Effect of Retraining

0 1 2 3 4 5 6 7 8

·10−2

CU

CU+S

CU+D

CU+S+D

TU

TU+S

TU+D

TU+S+D

0.041

0.04

0.048

0.04

0.035

0.04

0.043

0.044

0.014

0.012

0.01

0.014

0.013

0.01

0.015

0.02

0

0

0

0

0

0

0

0

0.006

0.006

0.006

0.006

0.006

0.006

0.006

0.006

0.061

0.058

0.064

0.06

0.053

0.056

0.064

0.07

errors per ground-truth edge

FN IS FP-D FN-D sum

(b) Architecture and Training Variations

Figure 7: Supplementary experiments to determine the effect of randomness in training and architecture and training variations. (a)
Sum of errors per ground truth edge, for five copies of the same model trained, validated, and tested on Mouse late 2. Variation in the
error counts stems from random network initialization and random training sample selection and augmentation. (b) Sum of errors per
ground truth edge for eight different models trained, validated, and tested on Mouse late 2, comparing constant (CU) and transpose
upsampling (TU), shift augmentation (+S), and division sampling (+D).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454016doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.28.454016
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Main
	Method
	Network Architecture, Training, and Prediction
	Candidate Graph Extraction
	Discrete Optimization to Find Linage Trees
	Integer Linear Program Formulation
	Processing Large Volumes Blockwise

	Supplementary Note 1: Datasets and Annotations
	Supplementary Note 2: Evaluation
	Metrics
	Baselines
	Results

	Supplementary Note 3: Ablation Study
	Supplementary Discussion

